首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Alumina-doped alginate gel (AEC) was developed as a new type of cell carrier to be used in ethanol fermentation. The presence of the alumina particles in alginate gel not only improved the porous structure of the carrier, but also provided many advantageous characteristics including good mechanical strength, high stability, and high immobilization yield. The attachment of alumina particles and yeast cells by electrostatic attraction was shown to promote cell growth and increase ethanol productivity. The AEC carrier was found to be more effective for the immobilization of Saccharomyces cerevisiae M30 than the conventional Ca-alginate bead. Ethanol productivities of 1.4 and 7.9 ∼ 12.6 g/(L/h) were obtained using the AEC cultures in batch and continuous modes of operation, respectively, with an ethanol yield of 43.9 ∼ 46.7% and an immobilized yield of 81.4 ∼ 84.5%. Ethanol fermentation in a continuous packed-bed reactor using the AEC carrier was stable for > 30 days.  相似文献   

2.
To alleviate the ethanol inhibition of Escherichia coli KO11 (ATCC 55124), during fermentation, online ethanol sequestration was achieved using F-600 activated carbon. Two separate schemes were tested, one involving direct addition of activated carbon to the fermentation flask for the purpose of in-situ adsorption and a second involving an externally located activated carbon packed bed. For the in-situ ethanol adsorption experiments, varying amounts of adsorbent were added to the medium at the start of the fermentation. The addition of the activated carbon in the fermentation broth resulted in increased glucose utilization and ethanol production for all flasks containing activated carbon. For the control flasks, approximately 75% of the available substrate was utilized before the fermentation was inhibited. The entire glucose supply of flasks containing activated carbon was depleted. Ethanol production was also increased from 28 g/L for the control containing no activated carbon to nearly 45 g/L (including the ethanol in the adsorbed phase) for the flasks containing activated carbon. The implementation of an externally located packed bed adsorber for the purpose of on-line ethanol removal was tested over a number of adsorption cycles to evaluate the performance of the adsorption bed and the ethanol productivity. Results indicate that maintaining ethanol fermentation medium concentrations below 20 ∼ 30 g/L extends and enhances ethanol productivity. After 3 cycles over a period of 180 h, an additional 80% ethanol was produced when compared to the control experiments, despite the suboptimal acidic pH of the medium.  相似文献   

3.
Summary Ethanol fermentation with Saccharomyces cerevisiae was carried out in a bioreactor equipped with a sintered stainless steel filter to obtain a high cell density as well as a high productivity. With a 100 g glucose/l feed, the maximum yeast concentration was 208 g/L similar to that obtained in external membrane cell recycle cultures. However, with tapioca hydrolysates, treated with activated carbon column, the yeast concentration attained was 42g/L.  相似文献   

4.
Zymomonas mobilis immobilized on microporous ion exchange resins has previously been shown to allow the attainment of high ethanol productivities in packed-bed bioreactors. The formation of bacterial filaments after several days of continuous operation, however, had resulted in excessive pressure increases across the reactor bed. The present work examines techniques for controlling filament formation by Z. mobilis in two reactor sizes (161 mL and 7.85 L) and a feed glucose concentration of 100 g/L. By controlling the fermentation temperature at 20-25 degrees C it has been possible to eliminate filament formation by Z. mobilis and to operate the larger bioreactor for 232 h with an ethanol productivity of 50 g/L h (based on total reactor volume). The rate of ethanol production has been shown to be very sensitive to temperature in the range 20-30 degrees C, and it is likely that slightly higher temperatures than those used in this study will improve ethanol productivity while still permitting long-term operation.  相似文献   

5.
Kluyveromyces marxianus UCD (FST) 55-82 cells were immobilized in Na alginate beads and used in a packed-bed bioreactor system for the continuous production of ethanol from the extract of Jerusalem artichoke tubers. Volumetric ethanol productivities of 104 and 80 g ethanol/ L/h were obtained at 80 and 92% sugar utilization, respectively. The maximum volumetric ethanol productivity of the immobilized cell bioreactor system was found to be 15 times higher than that of an ordinary-stirred-tank (CST) bioreactor using cells of K. marxianus. The immobilized cell bioreactor system was operated continuously at a constant dilution rate of 0.66 h(-1) for 12 days resulting in only an 8% loss of the original immobilized cell activity, which corresponds to an estimated half-life of ca. 72 days. The maximum specific ethanol productivity and maximum specific sugar uptake rate of the immobilized cells were found to be 0.55 g ethanol/g/biomass/h and 1.21 g sugars/g biomass/h, respectively.  相似文献   

6.
A system of ultrasonic filter device consisted of an ultrasonic generator, ultrasonic cell separation chamber (resonator) and a guide column, which was developed for suspension cultures of a plant cell. The key operation parameters affecting the efficiency of separation of cells from medium fluid were found to be the voltage of ultrasonic generator, the convective flow rate, and the distance between transducer and reflector. In the high density cultures ofAloe saponaria (>17 g DCW/L), the ultrasonic filter was so efficient that the cell holding time in the separation chamber was 10-fold higher than the case without ultrasonic wave at a convective flow rate of 0.24 cm/min. Furthermore, in perfusion type of high cell density cultures, cell aggregates were observed to be densely held in the ultrasonic chamber by ultrasonic force overcoming both gravitational and drag forces by pump. The accumulated cells were finally overflowed after the holding capacity of the chamber was reached. Back pressure was applied periodically to the resonator to flush cells back to bioreactor. The ultrasonic cell separator could operate over 75 min at a convective flow rate of 0.1 cm/min and at a cell concentration of 17 g DCW/L.  相似文献   

7.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

8.
A tapered column type of bioreactor system packed with immobilized Saccharomyces cerevisiae was used to study the bioreactor performance as a function of design and operating variables. The performance of tapered column bioreactor system was found to be better than that of the conventional cylindrical column reactor system for the ethanol fermentation. The new bioreactor design alleviated problems associated with carbon dioxide evolution and provided a significantly better flow pattern for both liquid and gas phases in the bioreactor without local channelling. A mathematical simulation model, which takes into account of the axial convection and dispersion, interphase mass transfer, and apparent kinetic design parameters, was developed. The effect of radial concentration gradients on the bioreactor performance was found to be insignificant. For the reactor system studied, the maximum ethanol productivity obtained was 60 g ethanol/L gel/h, and the maximum glucose assimilation rate was 140 g glucose/L gel/h. One of the most important findings from this study was that the apparent kinetic parameters change at the glucose concentration of 2 g/L This change was found to be due to the changes in yeast physiology and metabolism. The values of V(m) (') and V(m) (') decreased from 0.8 to 0.39 g ethanol/g cell/h and from 97mM to 11mM, respectively. The substrate inhibition constant was estimated as 0.76M and the product inhibition constant was determined as 113 g ethanol/L The degree of product inhibition showed practically a linear relationship with an increasing ethanol concentration. Based on the hydro-dynamic analysis of the bioreactor system, it was found that the Peclet number, N(Pe) was not a strong function of the flow velocity at low flow rates through the bioreactor system, but its value decreased somewhat at an interstitial velocity greater than 0.03 cm/s. The tapered column bioreactor system showed a much better flow pattern of gas and liquid phases within the reactor, thereby providing a more homogeneous distribution of gas-liquid-solid phases in the reactor without any phase separation.  相似文献   

9.
Continuous production of a recombinant murine granulocyte-macrophage colony-stimulating factor (MuGM-CSF) by immobilized yeast cells, Saccharomyces cerevisiae strain XV2181 (a/a, Trp1) containing plasmid palphaADH2, in a fluidized bed bioreactor was studied at a 0.03 h(-1) dilution rate and various particle loading rates ranging from 5% to 33% (v/v). Cells were immobilized on porous glass beads fluidized in an air-lift draft tube bioreactor. A selective medium containing glucose was used to start up the reactor. After reaching a stable cell concentration, the reactor feed was switched to a rich, nonselective medium containing ethanol as the carbon source for GM-CSF production. GM-CSF production increased initially and then dropped gradually to a stable level. During the same period, the fraction of plasmid-carrying cells declined continuously to a lower level, depending on the particle loading. The relatively stable GM-CSF production, despite the large decline in the fraction of plasmid-carrying cells, was attributed to cell immobilization. As the particle loading rate increased, the plasmid stability also increased. Also, as the particle loading increased from 5% to 33%, total cell density in the bioreactor increased from 16 to 36 g/L, and reactor volumetric productivity increased from 0.36 to 1.31 mg/L.h. However, the specific productivity of plasmid-carrying cells decreased from 0.55 to 0.07 mg/L.g cell. The decreased specific productivity at higher particle loading rates was attributed to reduced growth efficiency caused by nutrient limitations at higher cell densities. Both the reactor productivity and specific cell productivity increased by two- to threefold or higher when the dilution rate was increased from 0.03 to 0.07 h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
A novel method for the scale-up culture of Chinese hamster ovary (CHO) cells in a packed-bed bioreactor is developed wherein microcarriers, attached with CHO cells in a microcarrier culture system, are inoculated directly into the packed-bed bioreactor. Cells continue to grow after inoculation and the maximum cell density reaches about 2×107 cells ml–1. The method provides a new technique for the scale-up of a packed-bed culture while decreasing the labour cost and ensuring the safety of operation.  相似文献   

11.
The performance of an innovative two-stage continuous bioreactor with cell recycle—potentially capable of giving very high ethanol productivity—was investigated. The first stage was dedicated to cell growth, whereas the second stage was dedicated to ethanol production. A high cell density was obtained by an ultrafiltration module coupled to the outlet of the second reactor. A recycle loop from the second stage to the first one was tested to improve cell viability and activity. Cultivations of Saccharomyces cerevisiae in mineral medium on glucose were performed at 30°C and pH 4. At steady state, total biomass concentrations of 59 and 157 gDCW l−1 and ethanol concentrations of 31 and 65 g l−1 were obtained in the first and second stage, respectively. The residual glucose concentration was 73 g l−1 in the first stage and close to zero in the second stage. The present study shows that a very high ethanol productivity (up to 41 g l−1 h−1) can indeed be obtained with complete conversion of the glucose and with a high ethanol titre (8.3°GL) in the two-stage system.  相似文献   

12.
Biological phenol degradation in a draft tube gas-liquid-solid fluidized bed (DTFB) bioreactor containing a mixed culture immobilized on spherical activated carbon particles was investigated. The characteristics of biofilms including the biofilm dry density and thickness, the volumetric oxygen mass transfer coefficient, and the phenol removal rates under different operating conditions in the DTFB were evaluated. A phenol degradation rate as high as 18 kg/m(3)-day with an effluent phenol concentration less than 1 g/m(3) was achieved, signifying the high treatment efficiency of using a DTFB.  相似文献   

13.
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe oxidized per liter per h (1,400 mmol of Fe oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

14.
A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from 0.50 to 1.01 kg N/m3·d, the PBR exhibited 100∼98.8% NO3 -N removal efficiencies and nitrite concentrations in the effluent ranged from 0 to 0.6 NO2 -N mg/L. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than 1.01 kg N/m3·d, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.  相似文献   

15.
Fast Kinetics of Fe2+ Oxidation in Packed-Bed Reactors   总被引:6,自引:0,他引:6       下载免费PDF全文
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe2+ oxidized per liter per h (1,400 mmol of Fe2+ oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

16.
Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of ∼5 × 106 cells mL-1. Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell-1 day-1. Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized (∼40 mg L-1) at 0.2 nL cell-1 day-1. The volumetric protein productivity (∼60 mg L-1 day-1 was maximized above 0.3 nL cell-1 day-1. The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The production of recombinant glycoproteins in Dictyostelium discoideum by conventional cell culture methods was limited by low cell density as well as low growth rate. In this work, cotton towel with a good adsorption capability for D. discoideum cells was used as the immobilization matrix in an external fibrous bed bioreactor (FBB) system. With batch cultures in the FBB, the concentration of immobilized cells in the cotton fiber carrier increased to 1.37 × 108 cells per milliliter after 110-h cultivation, which was about tenfold higher than the maximal cell density in the conventional free-cell culture. Correspondingly, a high concentration of soluble human Fas ligand (hFasL; 173.7 μg l−1) was achieved with a high productivity (23 μg l−1 h−1). The FBB system also maintained a high density of viable cells for hFasL production during repeated-batch cultures, achieving a productivity of 9∼10 μg l−1 h−1 in all three batches studied during 15 days. The repeated-batch culture using immobilized cells of D. discoideum in the FBB system thus provides a good method for long-term and high-level production of hFasL.  相似文献   

18.
The use of an indigenous microbial consortium, pollutant-acclimated and attached to soil particles (activated soil), was studied as a bioaugmentation method for the aerobic biodegradation of pentachlorophenol (PCP) in a contaminated soil. A 125-l completely mixed soil slurry (10% soil) bioreactor was used to produce the activated soil biomass. Results showed that the bioreactor was very effective in producing a PCP-acclimated biomass. Within 30 days, PCP-degrading bacteria increased from 105 cfu/g to 108 cfu/g soil. Mineralization of the PCP added to the reactor was demonstrated by chloride accumulation in solution. The soil-attached consortium produced in the reactor was inhibited by PCP concentrations exceeding 250 mg/l. This high level of tolerance was attributed to the beneficial effect of the soil particles. Once produced, the activated soil biomass remained active for 5 weeks at 20 °C and for up to 3 months when kept at 4 °C. The activated attached soil biomass produced in the completely mixed soil slurry bioreactor, as well as a PCP-acclimated flocculent biomass obtained from an air-lift immobilized-soil bioreactor, were used to stimulate the bioremediation of a PCP-impacted sandy soil, which had no indigenous PCP-degrading microorganisms. Bioaugmentation of this soil by the acclimated biomass resulted in a 99% reduction (from 400 mg/kg to 5 mg/kg in 130 days) in PCP concentration. The PCP degradation rates obtained with the activated soil biomass, produced either as a biomass attached to soil particles or as a flocculent biomass, were similar. Received: 31 March 1997 / Received revision: 22 July 1997 / Accepted: 25 August 1997  相似文献   

19.
A method is described for estimating recombinant Chinese hamster ovary (rCHO) cell density in a packed-bed bioreactor by lactate production rate. The lactate production rate, which depended on both the cell numbers and cell growth rate, was modeled by segregating the cell population into two parts: one growing at a maximum specific growth rate and another non-growing. The individual cell in each part had the same lactate production rate. The established rate equation of lactate production matched the experimental data reasonably well and could be used to estimate the cell growth in the batch culture with microcarriers. Furthermore, in the perfusion culture of rCHO cells in a packed-bed bioreactor, the final cell density, 1.3×1010 cells l–1, estimated by lactate production rate, was comparable to the direct sample counting of 1.2×1010 cells l–1, showing that lactate production rate method would be useful in tracing the cell growth in packed-bed bioreactors.  相似文献   

20.
When the immobilized cells are employed in packed-bed bioreactors several problems appear. To overcome these drawbacks, a new bioreactor based on the use of pulsed systems was developed [1]. In this work, we study the glucose fermentation by immobilized Saccharomyces cerevisiae in a packed-bed bioreactor. A comparative study was then carried out for continuous fermentation in two packed-bed bioreactors, one of them with pulsed flow. The determination of the axial dispersion coefficients indicates that by introducing the pulsation, the hydraulic behaviour is closer to the plug flow model. In both cases, the residence time tested varied from 0.8 to 2.6 h. A higher ethanol concentration and productivity (increases up to 16%) were achieved with the pulsated reactors. The volumes occupied by the CO2 were 5.22% and 9.45% for fermentation with/without pulsation respectively. An activity test of the particles from the different sections revealed that the concentration and viability of bioparticles from the two bioreactors are similar. From the results we conclude that the improvements of the process are attributable to a mechanical effect rather than to physiological changes of microorganisms.List of Symbols D m2/s dispersion coefficient - K is l/g inhibition substrate constant - K ip l/g inhibition ethanol constant - K s g/l Apparent affinity constant - P g/l ethanol concentration - q p g/(gh) specific ethanol productivity - Q p g/(lh) overall ethanol productivity - q s g/(gh) specific glucose consumption rate - Q s g/(lh) glucose consumption rate - S g/l residual glucose concentration - S(in0) g/l initial glucose concentration - V max g/(lh) maximum rate - Y p/s g/g yield in product  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号