首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA transcription and translation in sea urchin oocytes and eggs   总被引:3,自引:0,他引:3  
The steady-state concentrations and absolute rates of synthesis of ribosomal RNA (rRNA) molecules were measured in oocytes, eggs, embryos, and larvae of the Hawaiian sea urchin Tripneustes gratilla. The steady-state concentration per genome of the RNA precursor sequences measured by hybridization to a cloned rDNA fragment was approximately 100- to 300-fold greater in the RNA obtained from oocytes and eggs than in the RNA extracted from embryos and larvae. Since the rate of processing of the rRNA precursor at different stages is not greatly different, the rates of rRNA synthesis must be considerably greater in oocytes than in embryo cells. The absolute rate of RNA synthesis in oocytes and embryos was determined from the incorporation of [3H]guanosine into cellular GTP pools and into both precursor and mature rRNA species. The data indicate an approximately 40-fold higher rate of rRNA synthesis in oocytes than that measured in embryos or previously in larvae (J. Griffith and T. Humphreys, 1979, Biochemistry18, 2178–2185). Together these results indicate that the ribosomal genes are transcribed much more rapidly during sea urchin oogenesis than during embryogenesis or larval stages.  相似文献   

2.
《The Journal of cell biology》1985,101(5):1749-1756
In the chicken, the nucleolus organizer regions, or sites of the genes encoding 18S, 5.8S, and 28S ribosomal RNA (rRNA), map to one pair of microchromosomes that can be identified by silver nitrate cytochemistry. This nucleolar organizer chromosome also contains the major histocompatibility complex. Chickens aneuploid for this chromosome have been identified and reproduced for over seven generations. Crossing two trisomic parents results in the production of viable disomic, trisomic, and tetrasomic progeny, showing two, three, and four nucleoli and nucleolar organizers per cell, respectively. A molecular analysis of rRNA genes was undertaken to establish the gene copy numbers in the aneuploid genotypes, and to determine if elevated numbers of rRNA genes are stably maintained and inherited over multiple generations. Gene copy numbers were determined using hybridization analysis of erythrocyte DNA obtained from individuals comprising a family which segregated disomic, trisomic, and tetrasomic genotypes. The values obtained were 290, 420, and 570 rDNA repeats per cell for disomic, trisomic, and tetrasomic animals, respectively. These results provide molecular confirmation of the two aneuploid states and show that elevated gene copy numbers have been maintained over multiple generations. Fibroblasts derived from disomic and tetrasomic embryos were found to grow at similar rates in culture, and mature rRNA levels in chicken embryo fibroblasts from disomic, trisomic and tetrasomic embryos were also found to have similar levels of mature rRNA. Therefore, despite the increase in rDNA content, the level of rRNA is regulated to diploid amounts in aneuploid fibroblasts.  相似文献   

3.
L Miller  J C Daniel 《In vitro》1977,13(9):557-563
Cells of embryos carrying a lethal nucleolar mutation have been maintained in vitro for extended periods of time. Normally these mutants live only 9 to 12 days after fertilization but their cells in culture will survive for more than 3 months. The extent of ribosomal RNA (rRNA) synthesis was determined in primary cultures prepared from normal embryos and nucleolar mutants having different numbers of ribosomal RNA genes. We found that the accumulation of radioactivity into rRNA for normal and mutant embryos was similar in vivo and in vitro. In primary cultures of normal embryos which have two nucleoli per cell and mutant embryos which have only one nucleolus per cell, the incorporation of radioactivity into rRNA was similar even though the normal cells have twice as many rRNA genes. Thus the mechanism which regulates dosage compensation of the rRNA genes operates both in vivo and in vitro.  相似文献   

4.
Summary Cells of embryos carrying a lethal nucleolar mutation have been maintained in vitro for extended periods of time. Normally these mutants live only 9 to 12 days after fertilization but their cells in culture will survive for more than 3 months. The extent of ribosomal RNA (rRNA) synthesis was determined in primary cultures prepared from normal embryos and nucleolar mutants having different numbers of ribosomal RNA genes. We found that the accumulation of radioactivity into rRNA for normal and mutant embryos was similar in vivo and in vitro. In primary cultures of normal embryos which have two nucleoli per cell and mutant embryos which have only one nucleolus per cell, the incorporation of radio-activity into rRNA was similar even though the normal cells have twice as many rRNA genes. Thus the mechanism which regulates dosage compensation of the rRNA genes operates both in vivo and in vitro. This work was supported by Grant GB38651 from the National Science Foundation.  相似文献   

5.
6.
The rates of syntheses of 18S and 28S rRNA, 5S RNA, capped mRNA and 4S RNA were determined in isolated cells from pre- and post-gastrular embryos of Xenopus laevis. The rate of rRNA synthesis per nucleolated cell Mas about 0.2 pg/hr, or about 5.5 × 104 molecules/hr at the blastula stage, and this value remained constant in later stages. At the blastula stage, about 30 molecules of 5s RNA, 10 molecules of capped mRNA and 900 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA. These values were all greatly reduced during the gastrula stage, and at the neurula stage, one molecule each of 5S RNA and capped mRNA and 10 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA.  相似文献   

7.
8.
Embryonic differentiation is believed to be due to a programmed expression of genes, which includes their time of activation, sequence of appearance, and amount transcribed into the immediate gene product, RNA. Differential synthesis of the major RNA classes, such as the ribosomal RNAs (28S, 18S, 5S) and transfer RNA (tRNA), characterizes many animal developing systems, including the sea urchin embryological system. Previous work has shown that the genes for 5S RNA and tRNA are active during early cleavage in sea urchin embryos. The present study focused on quantitatively measuring and comparing the rate of 5S RNA and tRNA synthesis in cleavage, early blastula, and early pluteus embryos of Arbacia punctulata. At each stage, embryos were labeled for 3 h with [8-3H]-guanosine. Total cellular RNA was extracted using the cold (4°C)-phenol-sodium dodecyl sulfate method and purified (LiCl-soluble) RNA preparations were fractionated by electrophoresis on 10% polyacrylamide gels. The amount of 5S RNA and tRNA synthesized at each stage was calculated from the radioactivity coincident with the 5S RNA and with the tRNA absorbance peaks (A260 nm) on each gel, from the known guanosine monophosphate (GMP) compositions of sea urchin 5S RNA and tRNA and from the average specific radioactivity of the GTP precursor pool during each 3 h labeling period. The results showed that on a per embryo basis the rates of 5S RNA and tRNA synthesis increased slightly (about 1.4-fold) from cleavage through pluteus stages, while on a per cell basis the rates declined severalfold (about 3-fold) during embryogenesis. The rates of 5S RNA and tRNA synthesis determined here parallel previously-reported levels of RNA polymerase III in sea urchin embryos, suggesting that cellular levels of RNA polymerase III may exert some positive control over 5S RNA and tRNA synthesis during sea urchin embryogenesis.  相似文献   

9.
Expression of ribosomal DNA insertions in Drosophila melanogaster.   总被引:35,自引:0,他引:35  
E O Long  I B Dawid 《Cell》1979,18(4):1185-1196
  相似文献   

10.
11.
Triploidy is a lethal condition in mammals, with most dying at some stage between implantation and term. In humans, however, a very small proportion of triploids are liveborn but display a wide range of congenital abnormalities. In particular, the placentas of human diandric triploid embryos consistently display “partial” hydatidiform molar degeneration, while those of digynic triploids generally do not show these histopathological features. In mice, the postimplantation development of diandric and digynic triploid embryos also differs. While both classes are capable of developing to the forelimb bud stage, no specific degenerative features of their placentas have been reported. Diandric triploid mouse embryos are morphologically normal while digynic triploid mouse embryos consistently display neural tube and occasionally cardiac abnormalities. Previously it was shown that the preimplantation development of micromanipulated diandric triploid mouse embryos was similar to developmentally matched diploid control embryos. In this study, the preimplantation development of micromanipulated digynic triploid mouse embryos is analysed and compared with that of diandric triploid mouse embryos in order to determine whether there is any difference in cleavage rate between these two classes of triploids. Standard micromanipulatory procedures were used to insert a female or a male pronucleus into a recipient diploid 1-cell stage embryo. The karyoplast was fused to the cytoplasm of the embryo by electrofusion. These tripronucleate 1-cell stage embryos were then transferred to pseudopregnant recipients and, at specific times after the HCG injection to induce ovulation, the embryos were recovered and total cell counts made. These results were plotted and regression lines drawn. An additional control group of embryos was subjected to similar micromanipulatory procedures to those used in the experimental study. These embryos had a single pronucleus removed and this was then reinserted into the perivitelline space. Diploidy was immediately restored by electrofusion. These embryos were transferred to recipients and at specific times after the HCG injection the embryos were recovered and total cell counts made. These results were also plotted and regression lines drawn. The results show that the cell doubling time of the digynic triploid embryos was 14.84 h (± 1.19). This was not significantly different from that of the diandric triploid embryos (13.55 h ± 0.86; P > 0.05) or of the manipulated diploid controls (12.12 h ± 0.79; P > 0.05). © 1993 Wiley-Liss, Inc.  相似文献   

12.
13.
Changing rates of DNA and RNA synthesis in Drosophila embryos   总被引:6,自引:0,他引:6  
Rates of DNA and RNA synthesis during Drosophila embryogenesis were measured by labeling octane-treated embryos with [14C]thymidine and [3H]uridine. Radioactivity incorporated per hour was converted to rates of synthesis using measurements of the pool-specific activity during the labeling periods. The rate of DNA synthesis during early embryogenesis increases to a maximum at 6 hr after oviposition and then decreases sharply. Measured rates of DNA synthesis were used to calculate that the total amount of DNA per embryo doubles every 18 min at blastoderm, every 70–80 min during gastrulation, and less than once every 7 hr at later stages. The rate of RNA accumulation per embryo increases continuously during the first 14 hr of embryogenesis. The rate of nuclear RNA synthesis per diploid amount of DNA, however, decreases fivefold between blastoderm and primary organogenesis. The cytoplasmic poly(A)+ RNA synthesized by blastoderm embryos associates rapidly with polysomes. The relatively high rate of synthesis of polysomal poly(A)+ RNA per nucleus at blastoderm allows the small number of nuclei present at blastoderm to make a significant quantitative contribution to the informational RNA active in the early embryo. At the end of blastoderm, approximately 14% of the mRNA being translated in the embryo has been synthesized after fertilization.  相似文献   

14.
15.
16.
Contractile activity of neonatal cardiac myocytes stimulated hypertrophic growth as compared with nonbeating cells that were depolarized with 50 mM KCl. Growth of contracting myocytes was associated with an increased rRNA content as measured by the total RNA/DNA ratio. The fractional rates of rRNA synthesis (K8) and rRNA degradation were determined in contracting and nonbeating myocytes to assess their relative contributions in increasing rRNA content during growth. The values for K8 were calculated from the specific radioactivity of 3'-[3H]UMP in 18 and 28 S rRNA after purification by hybridization to cloned rDNA. The cellular [3H]UTP pool served as the precursor for rRNA synthesis in myocytes that were labeled with 50 microM [3H]uridine. K8 values for 18 and 28 S rRNA in contracting myocytes were accelerated by 59 and 53%, respectively, after 3 days as compared with nonbeating myocytes. Calculations of the rate of cellular rRNA synthesis, which took into account the increased content of myocyte rRNA, revealed that synthesis of both 18 and 28 S rRNA was accelerated 2-fold after 2 days of contraction. The derived values for degradation of 18 and 28 S rRNA were increased marginally in contracting myocytes, but cellular rRNA degradation rates averaged 57% higher. The difference between cellular rates of rRNA synthesis and degradation in contracting myocytes accounted for the 30% increase in rRNA content. These data demonstrated that increased rRNA content in contracting myocytes resulted from acceleration of the fractional rate of rRNA synthesis.  相似文献   

17.
18.
19.
The genetic variations of Lycoris radiata var. radiata, a completely sterile triploid from Japan, were examined by comparing the nucleotide sequences of genomic DNA regions in 11 triploid strains sampled from Japan and four triploid strains sampled from China, and in two diploid strains of Lycoris radiata var. pumila, which is endemic to China and fertile. For this purpose, two genes were analyzed, the lectin gene in the nuclear genome and the maturase gene in the chloroplast genome. A clear genetic constancy was observed in their DNA nucleotide sequences. For both genes, completely identical nucleotide sequences were detected in the 11 Japanese and four Chinese triploid strains and also between the two Chinese diploid strains. However, some genetic variations were observed between the Japanese and Chinese triploid strains, and between the triploid and diploid strains. These results are consistent with the findings obtained from previous chromosome karyotype analyses and allozyme analyses. In addition, in our preliminary FISH analysis of the physical mapping of the rRNA gene family, the 18S-5.8S-26S rRNA and 5S rRNA loci were localized on six and four chromosomes, respectively. Regarding the 18S-5.8S-26S rRNA loci, two were associated with two SAT chromosomes. The remaining four were distinguished by having no secondary constriction. Localization of 5S rRNA loci to chromosome spreads revealed three sites on the proximal part of the long arm of three acrocentric chromosomes and one site on the distal part of the long arm of the SAT chromosome; the latter site was juxtaposed to the 18S-5.8S-26S rRNA loci. These findings indicate that L. radiata var. radiata is not a typical autotriploid. The present paper discusses the possible origin of L. radiata var. radiata from a diploid variety of L. radiata var. pumila, based on the molecular cytogenetic analysis and DNA sequence analysis.  相似文献   

20.
The postimplantation development of human and animal triploid embryos is well documented, but there is little informative data on their preimplantation development. An analysis of cell number at appropriate times during this period and thus their cleavage rate would give an indication of the potential triploids have for further development and may explain some problems associated with their postimplantation development. To rule out any effects of technical procedures on cleavage rate, appropriate controls were used. Diandric triploid embryos were produced using standard micromanipulatory techniques, which involved the injection of a male pronucleus into a recipient one-cell-stage embryo. The karyoplast was fused to the cytoplasm by electrofusion, and the resulting tripronucleate diandric triploid embryos were transferred to appropriate pseudopregnant recipients. At specific times after the transfer, the embryos were recovered and cell numbers established. The results were plotted and regression lines drawn. Three controls were used 1) micromanipulated diploid embryos from which the male pronucleus had been removed and immediately reinserted and fused to restore diploidy, 2) diploid embryos that had been briefly incubated in cytochalasin D and colcemid to find out the effects these agents had on development, and 3) diploid embryos that had been isolated and briefly incubated in tissue culture medium. All embryos were subsequently transferred to recipients. After isolation at specific times during the preimplantation period, cell numbers were also established and the results plotted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号