共查询到20条相似文献,搜索用时 0 毫秒
1.
The N-terminal domain of OmpATb is required for membrane translocation and pore-forming activity in mycobacteria 总被引:2,自引:0,他引:2
下载免费PDF全文

Alahari A Saint N Campagna S Molle V Molle G Kremer L 《Journal of bacteriology》2007,189(17):6351-6358
OmpATb is the prototype of a new family of porins in Mycobacterium tuberculosis and Mycobacterium bovis BCG. Although the pore-forming activity of this protein has been clearly established by using recombinant protein produced in Escherichia coli, characterization of the native porin has been hampered by the scarce amount of protein present in the M. tuberculosis detergent extracts. To this aim, we have developed a protocol to overproduce and obtain high yields of OmpATb in both Mycobacterium smegmatis and M. bovis BCG. The protein could be extracted and purified from the cell wall fraction and subsequently used for analysis of the pore-forming activity in multichannel and single-channel conductance experiments. Our results indicate that OmpATb produced in mycobacteria presents an average conductance value of 1,600+/-100 pS, slightly higher than that of OmpATb produced in E. coli, suggesting the occurrence of OmpATb in a highly ordered organization within the mycobacterial cell wall. In contrast to OmpATb, a truncated form lacking the first 72 amino acids (OmpATb73-326) was essentially found in the cytosol and was not active in planar lipid bilayers. This suggested that the N-terminal domain of OmpATb could participate in targeting of OmpATb to the cell wall. This was further confirmed by analyzing M. smegmatis clones expressing a chimeric protein consisting of a fusion between the N-terminal domain of OmpATb and the E. coli PhoA reporter. The present study shows for the first time that the N terminus of OmpATb is required for targeting the porin to the cell wall and also appears to be essential for its pore-forming activity. 相似文献
2.
3.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents. 相似文献
4.
Wong HC Liu G Zhang YM Rock CO Zheng J 《The Journal of biological chemistry》2002,277(18):15874-15880
Acyl carrier protein (ACP) performs the essential function of shuttling the intermediates between the enzymes that constitute the type II fatty acid synthase system. Mycobacterium tuberculosis is unique in producing extremely long mycolic acids, and tubercular ACP, AcpM, is also unique in possessing a longer carboxyl terminus than other ACPs. We determined the solution structure of AcpM using protein NMR spectroscopy to define the similarities and differences between AcpM and the typical structures. The amino-terminal region of the structure is well defined and consists of four helices arranged in a right-handed bundle held together by interhelical hydrophobic interactions similar to the structures of other bacterial ACPs. The unique carboxyl-terminal extension from helix IV has a "melted down" feature, and the end of the molecule is a random coil. A comparison of the apo- and holo-forms of AcpM revealed that the 4'-phosphopantetheine group oscillates between two states; in one it is bound to a hydrophobic groove on the surface of AcpM, and in another it is solvent-exposed. The similarity between AcpM and other ACPs reveals the conserved structural motif that is recognized by all type II enzymes. However, the function of the coil domain extending from helix IV to the carboxyl terminus remains enigmatic, but its structural characteristics suggest that it may interact with the very long chain intermediates in mycolic acid biosynthesis or control specific protein-protein interactions. 相似文献
5.
K1 killer toxin, a pore-forming protein from yeast 总被引:21,自引:0,他引:21
H. Bussey 《Molecular microbiology》1991,5(10):2339-2343
K1 killer toxin is a secreted, pore-forming protein that kills sensitive yeast cells. The heterodimeric toxin is processed from a precursor in the Golgi, and has allowed identification of the KEX2- and KEX1-encoded proteases. The toxin binds to a glucan receptor on the cell wall of target yeast, and mutational analysis implicates both the alpha- and beta-toxin subunits in receptor binding. Toxin-resistant mutants with altered cell-wall glucans have helped to outline a pathway of assembly of these polysaccharides. Patch-clamp technology has demonstrated the nature of the lethal channel in toxin-treated plasma membranes. The hydrophobic alpha-subunit-encoding region is the site of all mutations affecting channel formation. Immunity to the toxin is conferred by the toxin precursor, and immunity mutations map to the region encoding the alpha subunit. The precursor probably competes with the toxin to prevent channel formation in toxin-producing cells, but the basis of this remains unknown. This toxin/immunity system has a domain structure that differs from that of other characterized toxins and has no known homologues. 相似文献
6.
Volvatoxin A2 (VVA2), a novel pore-forming cardiotoxic protein was isolated from the mushroom Volvariella volvacea. We identified an N-terminal fragment (NTF) (1-127 residues) of VVA2 as a domain for oligomerization by limited tryptic digestion. On preincubation of NTF with VVA2, NTF was found to inhibit VVA2 hemolytic activity by inducing VVA2 oligomerization in the solution in the same manner as liposomes. By site-directed mutagenesis, the amphipathic alpha-helix B of NTF or VVA2 was shown to be indispensable for its biological functions. Interestingly, at a molar ratio of recombinant NTF (reNTF)/VVA2 as low as 0.01, reNTF was able to inhibit VVA2 hemolytic activity and induce VVA2 oligomerization. This indicates that reNTF can trigger VVA2 oligomerization by a seeding effect. Furthermore, the recombinant C-terminal fragment (128-199 residues) was found to be a functional domain that mediates the membrane binding of VVA2. We found a fragment localized at the C-terminal half of VVA2 containing beta6, -7, and -8, which is protected from protease digestion because of its insertion of a membrane. We also identified a putative heparin binding site (HBS) located in the VVA2 C terminus (166-194 residues), which was conserved among 10 kinds of snake venom cardiotoxins. VVA2 or the reHBS fragment was shown to interact with sulfated glycoaminoglycans by affinity column chromatography. The finding of a higher number of glycoaminoglycans in the membrane of cardiac myocytes suggested that they could be the specific membrane target for VVA2. Taken together, these findings indicate that VVA2 contains two functional domains, NTF and CTF. The NTF domain is responsible for VVA2 oligomerization and the CTF domain for membrane binding and insertion. Our results support a model whereby the formation of VVA2 oligomeric pre-pore complexes precedes their membrane insertion. 相似文献
7.
8.
Julia C. Micklinghoff Mascha Schmidt Robert Geffers Werner Tegge Franz-Christoph Bange 《Archives of microbiology》2010,192(6):499-504
In many bacterial species, the translational GTPase TypA acts as a global stress- and virulence regulator and also mediates resistance to the antimicrobial peptide BPI. On the chromosome of M. tuberculosis, typA is located next to narGHJI, which plays a role in adaptation of the pathogen to various environmental conditions. Here, we show that Mycobacterium tuberculosis is sensitive to P2, a derivative of BPI. Using a typA mutant of M. tuberculosis, we found this phenotype to be independent of TypA. We further tested typA expression in M. tuberculosis under defined stress conditions, such as oxygen- and nutrient depletion, low pH, heat shock, antibiotic stress and the presence of P2, and found that typA expression remains unaffected by any of these conditions. Analysis of growth and whole-genome expression revealed similar growth kinetics and gene expression profiles of the wild type and the mutant under normal growth conditions as well as under stress conditions. Our results suggest that in contrast to the findings in other bacteria, TypA does not act as a global stress- and virulence regulator in M. tuberculosis. 相似文献
9.
The specific 18-kilodalton antigen of Mycobacterium leprae is present in Mycobacterium habana and functions as a heat-shock protein 总被引:11,自引:0,他引:11
A mAb previously thought to be specific for Mycobacterium leprae has been found to cross-react with a cultivable mycobacterium, Mycobacterium habana TMC5135. The epitope is present on a protein of identical molecular mass (18 kDa) in both species. When M. habana is subjected to heat shock, expression of the protein is significantly increased, whereas other forms of environmental stress do not increase its expression. Since immunization of mice with M. habana results in protection against infection with M. leprae, the possibility of using a molecular genetic approach to investigate the role of this protein in protective immunity is raised. 相似文献
10.
Plaza DF Curtidor H Patarroyo MA Chapeton-Montes JA Reyes C Barreto J Patarroyo ME 《The FEBS journal》2007,274(24):6352-6364
The characterization of membrane proteins having no identified function in Mycobacterium tuberculosis is important for a better understanding of the biology of this pathogen. In this work, the biological activity of the Rv2560 protein was characterized and evaluated. Primers used in PCR and RT-PCR assays revealed that the gene encoding protein Rv2560 is present in M. tuberculosis complex strains, but transcribed in only some of them. Sera obtained from rabbits inoculated with polymer peptides from this protein recognized a 33 kDa band in the M. tuberculosis lysate and a membrane fraction corresponding to the predicted molecular mass (33.1 kDa) of this protein. Immunoelectron microscopy analysis found this protein on the mycobacterial membrane. Sixteen peptides covering its entire length were chemically synthesized and tested for their ability to bind to A549 and U937 cells. Peptide 11024 (121VVALSDRATTAYTNTSGVSS140) showed high specific binding to both cell types (dissociation constants of 380 and 800 nm, respectively, and positive receptor-ligand interaction cooperativity), whereas peptide 11033 (284LIGIPVAALIHVYTYRKLSGG304) displayed high binding activity to A549 cells only. Cross-linking assays showed the specific binding of peptide 11024 to a 54 kDa membrane protein on U937. Invasion inhibition assays, in the presence of shared high-activity binding peptide identified for U937 and A549 cells, presented maximum inhibition percentages of 50.53% and 58.27%, respectively. Our work highlights the relevance of the Rv2560 protein in the M. tuberculosis invasion process of monocytes and epithelial cells, and represents a fundamental step in the rational selection of new antigens to be included as components in a multiepitope, subunit-based, chemically synthesized, antituberculosis vaccine. 相似文献
11.
Goulding CW Bowers PM Segelke B Lekin T Kim CY Terwilliger TC Eisenberg D 《Journal of molecular biology》2007,365(2):275-283
Fatty acid biosynthesis is essential for the survival of Mycobacterium tuberculosis and acetyl-coenzyme A (acetyl-CoA) is an essential precursor in this pathway. We have determined the 3-D crystal structure of M. tuberculosis citrate lyase beta-subunit (CitE), which as annotated should cleave protein bound citryl-CoA to oxaloacetate and a protein-bound CoA derivative. The CitE structure has the (beta/alpha)(8) TIM barrel fold with an additional alpha-helix, and is trimeric. We have determined the ternary complex bound with oxaloacetate and magnesium, revealing some of the conserved residues involved in catalysis. While the bacterial citrate lyase is a complex with three subunits, the M. tuberculosis genome does not contain the alpha and gamma subunits of this complex, implying that M. tuberculosis CitE acts differently from other bacterial CitE proteins. The analysis of gene clusters containing the CitE protein from 168 fully sequenced organisms has led us to identify a grouping of functionally related genes preserved in M. tuberculosis, Rattus norvegicus, Homo sapiens, and Mus musculus. We propose a novel enzymatic function for M. tuberculosis CitE in fatty acid biosynthesis that is analogous to bacterial citrate lyase but producing acetyl-CoA rather than a protein-bound CoA derivative. 相似文献
12.
13.
14.
We previously identified a 70-kDa serine/threonine protein kinase (MbK or PknD) from Mycobacterium tuberculosis Erdman containing a transmembrane domain and bearing a 270-amino acid N-terminal kinase domain. With the use of a polyclonal serum, Mbk has now been identified by Western blotting in protein extracts from M. tuberculosis and confirmed to be localised in the envelope. An identical mbk gene has been found by sequencing different M. tuberculosis and M. africanum strains. Surprisingly, in two virulent M. bovis strains and four different strains of M. bovis BCG, an additional adenine after position 829 of the open reading frame was found that produces a frame shift resulting in a predicted truncated, presumably free cytoplasmic protein, encoding only the N-terminal 30-kDa Mbk kinase domain. This sequence polymorphism has been confirmed by Western blot analysis of M. bovis BCG protein extracts. 相似文献
15.
16.
Helguera-Repetto C Cox RA Muñoz-Sànchez JL Gonzalez-y-Merchand JA 《FEMS microbiology letters》2004,235(2):281-288
Although Mycobacterium marinum and Mycobacterium tuberculosis are very closely related they differ significantly in their growth rates. The Type strain of M. marinum and one clinical isolate were investigated and, like M. tuberculosis, were found to have a single rRNA (rrn) operon per genome located downstream from murA gene and controlled by two promoters. No sequence differences were found that account for the difference in the growth rates of the two species. We infer that M. tuberculosis has the capacity to synthesize rRNA much faster than it actually does; and propose that the high number of insertion sequences in this species attenuate growth rate to lower values. 相似文献
17.
18.
Tuberculosis remains a major infectious disease with over 8 million new cases and 2 million deaths annually. Therefore, a vaccine more potent than BCG is desperately needed. In this regard, an approximately 800 bp DNA encoding a mycobacterial synthetic gene designated as VacIII (containing ubiquitin gene UbGR and four immunogenic mycobacterial epitopes or genes of ESAT-6, Phos1, Hsp 16.3, and Mtb8.4) was sub-cloned into a bacterial expression vector of pRSET-B resulting in a 6 x His-VacIII fusion gene construction. This recombinant clone was over expressed in Escherichia coli BL-21 (DE-3). The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea and the recombinant protein was purified by Ni-NTA column and dialyzed by urea gradient dialysis. This method produced a relatively high yield of recombinant VacIII protein and the cloned VacIII gene offers the potential development of other vaccine formats such as DNA vaccine and recombinant vaccine. 相似文献
19.
The Mycobacterium tuberculosis PhoPR two-component system is essential for virulence in animal models of tuberculosis. Recent articles have shown that among the reasons for the attenuation of the M. tuberculosis H37Ra strain is a mutation in the phoP gene that prevents the secretion of proteins that are important for virulence. There is a need for new anti-tubercular therapies because of the emergence of multi-drug-resistant M. tuberculosis strains and also the variable efficacy of the currently used bacille Calmette-Guérin vaccine. Because of its major role in M. tuberculosis pathogenicity, PhoP is a potential target candidate. This review summarizes our understanding of PhoPR's role in virulence and discusses areas in which our knowledge is limited. 相似文献
20.