首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resident and thioglycollate-elicited macrophages maintained in culture for 24 h contain approximately 5 x 10(-16) and 12 x 10(-16) mol of ATP per cell, respectively. During particle ingestion, the levels of ATP in these cells did not change. However, the specific activity of ATP extracted from macrophages labeled with [32P]Pi during phagocytosis was 40% lower than ATP extracted from control cells. These results suggested that macrophages contain a high energy phosphate reservoir, in addition to the ATP pool(s). A search for such a reservoir led to the identification of creatine phosphate in both resident and thioglycollate-elicited macrophages at concentrations that are in 3- to 5-fold-molar excess over ATP. Creatine phosphate levels in phagocytosing resident macrophages decreased by 45%, while creatine phosphate levels in phagocytosing thioglycollate-elicited macrophages did not change. Creatine phosphate turnover was measured in macrophages prelabeled with [14C]creatine. Over 90% of the intracellular label was in the form of creatine phosphate. During phagocytosis, there was a 40% decrease in intracellular [14C]creatine phosphate in both resident and thioglycollate-elicited macrophages. These results indicate that creatine phosphate turns over more rapidly during phagocytosis and replenishes the ATP consumed.  相似文献   

2.
Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in Kupffer cell function, especially in phagocytosis activity. Although it was suggested that Kupffer G6PD may be upregulated in Kupffer phagocytosis/activation, direct morphological evidence has been lacking. Acid phosphatase (ACP), a representative lysosomal enzyme, can be used as a cytochemical marker for phagocyte activation. Using an ultrastructural enzyme-cytochemical dual staining method, I simultaneously localized G6PD and ACP activity in mouse Kupffer cells on a cell-by-cell basis, and examined whether or not cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Glucose-6-phosphate dehydrogenase labelings were observed in the cytoplasm and on the cytosolic side of the endoplasmic reticulum, and ACP labelings were seen in the lysosomes. In phagocytosing Kupffer cells, in which ACP deposits were observed not only in the lysosomes but also on the phagosomal membranes and phagosomal contents, G6PD labelings were denser than dormant Kupffer cells. Enzyme-cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Kupffer cell G6PD, activated in phagocytosing Kupffer cells, may play an important role not only in liver defense but also in liver disease pathogenesis/pathophysiology.  相似文献   

3.
Tartrate-resistant acid phosphatase (TRAP) is an enzyme expressed specifically in osteoclasts and activated macrophages, two phagocytosing cell types originating from the same hematopoietic stem cells. TRAP contains a binuclear iron centre which has been shown to generate reactive oxygen species (ROS). In this study murine macrophage like cell line RAW-264 overexpressing TRAP was shown to produce elevated levels of hydroxyl radicals compared to parental cells. TRAP transfected cells also had reduced growth rate indicating harmful effects of excessive intracellular ROS levels. Using TRAP specific antibody TRAP protein was shown in alveolar macrophages partially colocalize with late endosomal/lysosomal markers Rab7, Lamp 1 and MHC II molecules that bind antigenic peptides. TRAP also colocalized into compartments where Staphylococcus aureus were phagocytosed. These results suggest that TRAP may have an important biological function in the defence mechanism of macrophages by generating intracellular ROS which would be targeted to destroy phagocytosed foreign material.  相似文献   

4.
Influenza virus-infected cells undergo apoptosis and become susceptible to phagocytosis by macrophages in vitro, and this leads to the propagation of the virus being inhibited. We previously showed that inhibitors of phagocytosis increased the rate of mortality among influenza virus-infected mice. However, the mode of the phagocytosis of influenza virus-infected cells in vivo has not been investigated. We, in this study, assessed this issue by histochemically analyzing bronchoalveolar lavage cells and lung tissue obtained from C57BL/6 mice infected with influenza A/WSN (H1N1) virus. Both neutrophils and macrophages accumulated in the lung soon after the viral challenge, and either type of cell was capable of phagocytosing influenza virus-infected, apoptotic cells. Changes in the level of phagocytosis and the amount of virus in lung tissue roughly correlated with each other. Furthermore, alveolar macrophages prepared from influenza virus-infected mice showed greater phagocytic activity than those from uninfected mice. The phagocytic activity of macrophages was stimulated in vitro by a heat-labile substance(s) released from influenza virus-infected cells undergoing apoptosis. These results suggested that the level of phagocytosis is augmented both quantitatively and qualitatively in the lung of influenza virus-infected animals so that infected cells are effectively eliminated. Finally, lack of TLR4 caused an increase in the rate of mortality among influenza virus-challenged mice and a decrease in the level of phagocytosis of apoptotic cells in the lung. TLR4 could thus play an important role in the host defense against influenza by positively regulating the phagocytic elimination of infected cells.  相似文献   

5.
Induction of phagocytic activity in the Ml cell line of mouse myeloid leukemia, on being exposed to a conditioned medium from cultured embryo cells, was accompanied by an increment in the activities of both lysosomal acid phosphatase and acid protease. The activity of these lysosomal enzymes, as well as that of phagocytosis, was not induced when Ml cells were incubated either with the conditioned medium subjected to heat treatment or in the presence of 5-bromodeoxyuridine (BUdR). The levels of these induced enzyme activities in Ml cells were comparable to those in normal mouse peritoneal macrophages. The lysosomal enzyme activity in Mm-1 cells, which were spontaneously differentiated from Ml cells and exhibiting a higher phagocytic activity, were reminiscent of those in peritoneal macrophages. Based on these observations, it was concluded that both phagocytosis and lysosomal enzyme activity occur simultaneously during the course of differentiation. This differentiation, morphological or functional, in Ml cells in the presence of the conditioned medium was further supported by biochemical evidence.  相似文献   

6.
The enzyme 12/15-lipoxygenase (12/15-LO) introduces peroxyl groups in a position-specific manner into unsaturated fatty acids in certain cells, but the role of such enzymatic lipid peroxidation remains poorly defined. Here we report a novel function for 12/15-LO in mouse peritoneal macrophages. When macrophages were coincubated with apoptotic cells, the enzyme translocated from cytosol to the plasma membrane and was more extensively concentrated at sites where macrophages bound apoptotic cells, colocalizing with polymerized actin of emerging filopodia. Disruption of F-actin did not prevent the 12/15-LO translocation. In contrast, inhibition of the 12/15-LO activity, or utilization of genetically engineered macrophages in which the 12/15-LO gene has been disrupted, greatly reduced actin polymerization in phagocytosing macrophages. Lysates of 12/15-LO-deficient macrophages had significantly lower ability to promote in vitro actin polymerization than the lysates of wild type macrophages. These studies suggest that the 12/15-LO enzyme plays a major role in local control of actin polymerization in macrophages in response to interaction with apoptotic cells.  相似文献   

7.
Summary Methods for comparing results of cellular acid phosphatase activities obtained by quantitative cytospectrophotometry with those obtained by biochemical analysis are needed to express the cytospectrophotometric data in biochemical units. Since naturally occurring cells have differing amounts of acid phosphatase, enzyme activity was measured cytochemically and biochemically in polymorphonuclear leukocytes and peritoneal and alveolar macrophages from male rats to determine if these measurements permitted construction of a line correlating the two parameters. Cellular acid phosphatase activity, as measured cytospectrophotometrically and biochemically, increased proportionately with polymorphonuclear leukocytes having the lowest activities and alveolar macrophages the highest. These values when subjected to linear regression analysis fixed a line with a correlation coefficient of 0.95 demonstrating that cytochemical and biochemical activities of acid phosphatase activity can be correlated using naturally occurring cells.  相似文献   

8.
The phospholipids of rabbit alveolar macrophages were pulse-labelled with [(14)C]-arachidonic acid, and the subsequent release of labelled prostaglandins was measured. Resting macrophages released measurable amounts of arachidonic acid, the prostaglandins E(2), D(2) and F(2alpha) and 6-oxoprostaglandin F(1alpha). Phagocytosis of zymosan increased the release of arachidonic acid and prostaglandins to 2.5 times the control value. In contrast, phagocytosis of inert latex particles had no effect on prostaglandin release. Indomethacin inhibited the release of prostaglandin, and, at high doses (20mug/ml), increased arachidonic acid release. Analysis of the cellular lipids showed that after zymosan stimulation the proportion of label was decreased in phosphatidylcholine, but not in other phospholipids or neutral lipids. Cytochalasin B, at a dose of 2mug/ml, inhibited the phagocytosis induced by zymosan but increased prostaglandin synthesis to 3.4 times the control. These data suggest that the stimulation of prostaglandin synthesis by zymosan is not dependent on phagocytosis. Exposure to zymosan also resulted in the release of the lysosomal enzyme, acid phosphatase. Furthermore, cytochalasin B augmented the zymosan-stimulated release of acid phosphatase at the same dose that stimulated prostaglandin synthesis. However, indomethacin, at a dose that completely inhibited prostaglandin synthesis, failed to block the lysosomal enzyme release. Thus despite some parallels between the release of prostaglandins and lysosomal enzymes, endogenous prostaglandins do not appear to mediate the release of lysosomal enzymes. The prostaglandins released from the macrophages may function as humoral substances affecting other cells.  相似文献   

9.
Bacteriological assay, cytochemical studies of succinate and malate dehydrogenases, acid phosphatase, glycogen and lipids, as well as electron microscopy were used in experiments on 75 rabbits to examine over time phagocytosis of alveolar macrophages and some mechanisms of its disturbance after burn trauma. It was established that the phagocytic function of alveolar macrophages gets disturbed shortly after trauma, remaining depressed up to the time of convalescence. It was demonstrated that the mechanism by which phagocytic function gets disturbed differs with time following trauma. Primary depression of phagocytosis occurs immediately after burn. At the height of burn disease the cells develop an energy deficient state, whereas the time of convalescence is marked by the emergence of poorly differentiated forms of macrophages having the reduced phagocyte capacity.  相似文献   

10.
Pulmonary surfactant proteins A (SP-A) and D (SP-D), members of the collectin family, play important roles in the innate immune system of the lung. Here, we show that SP-A but not SP-D augmented phagocytosis of Streptococcus pneumoniae by alveolar macrophages, independent of its binding to the bacteria. Analysis of the SP-A/SP-D chimeras, in which progressively longer carboxyl-terminal regions of SP-A were replaced with the corresponding SP-D regions, has revealed that the SP-D region Gly(346)-Phe(355) can be substituted for the SP-A region Leu(219)-Phe(228) without altering the SP-A activity of enhancing the phagocytosis and that the SP-A region Cys(204)-Cys(218) is required for the SP-A-mediated phagocytosis. Acetylated low density lipoprotein significantly reduced the SP-A-stimulated uptake of the bacteria. SP-A failed to enhance the phagocytosis of S. pneumoniae by alveolar macrophages derived from scavenger receptor A (SR-A)-deficient mice, demonstrating that SP-A augments SRA-mediated phagocytosis. Preincubation of macrophages with SP-A at 37 degrees C but not at 4 degrees C stimulated the phagocytosis. The SP-A-mediated enhanced phagocytosis was not inhibited by the presence of cycloheximide. SP-A increased cell surface localization of SR-A that was inhibitable by apigenin, a casein kinase 2 (CK2) inhibitor. SP-A-treated macrophages exhibited significantly greater binding of acetylated low density lipoprotein than nontreated cells. The SP-A-stimulated phagocytosis was also abolished by apigenin. In addition, SP-A stimulated CK2 activity. These results demonstrate that SP-A enhances the phagocytosis of S. pneumoniae by alveolar macrophages through a CK2-dependent increase of cell surface SR-A localization. This study reveals a novel mechanism of bacterial clearance by alveolar macrophages.  相似文献   

11.
Summary A tartrate-resistant purple acid phosphatase was localized in human and bovine alveolar macrophages by enzyme- and immuno-histochemistry using an antibody to bovine spleen purple phosphatase. The enzyme could be detected in human and bovine lung tissues as well as on cytospin preparations of alveolar macrophage suspensions from bronchoalveolar lavages. The immunological identity of human and bovine purple phosphatases from alveolar macrophages was demonstrated by Western blot analysis of material separated by polyacrylamide gel electrophoresis. A possible significance of the purple phosphatase as a marker enzyme of activated cells of the mononuclear phagocyte system is discussed.  相似文献   

12.
A tartrate-resistant purple acid phosphatase was localized in human and bovine alveolar macrophages by enzyme- and immuno-histochemistry using an antibody to bovine spleen purple phosphatase. The enzyme could be detected in human and bovine lung tissues as well as on cytospin preparations of alveolar macrophage suspensions from bronchoalveolar lavages. The immunological identity of human and bovine purple phosphatases from alveolar macrophages was demonstrated by Western blot analysis of material separated by polyacrylamide gel electrophoresis. A possible significance of the purple phosphatase as a marker enzyme of activated cells of the mononuclear phagocyte system is discussed.  相似文献   

13.
Cytochemical investigations have associated acid inorganic trimetaphosphatase (TMPase) activity with the lysosomes of certain cell types. We have used the modified staining technique of Berg to show that this enzyme activity is present in normal mononuclear phagocytes and macrophage cell lines. We have found this enzyme activity to be present in murine RAW264 macrophages, in human U937 macrophages, in normal human blood monocytes, and in guinea pig peritoneal macrophages. All of the RAW264 and U937 macrophages showed intense TMPase activity. Many of the human monocytes and most of the guinea pig macrophages were labeled by this method. The reaction product was associated with the lysosomes of these cell types. The lysosomal staining-pattern was similar to that of acid phosphatase. Differences with regard to Golgi staining were noted. This indicates that TMPase is a lysosomal enzyme of mammalian macrophages. The distinction between TMPase and acid phosphatase activity has been demonstrated by measuring the pH optimum of each enzyme. Using substrates identical to those of the ultrastructural cytochemistry, we show that the pH optimum of TMPase is 4.0 and that of acid phosphatase is 5.0. The enzymatic activities are therefore ultrastructurally and biochemically distinct. Following phagocytosis of latex, yeast (Saccharomyces cerevisiae), or Corynebacterium parvum, TMPase has been found to be associated with phagosomes. This enzyme may take part in the degradation of phagocytosed materials, particularly microorganisms which contain inorganic polyphosphates and metaphosphates.  相似文献   

14.
RU 41740 (Biostim) is an immunomodulator clinically used for the treatment of chronic bronchitis and recurrent pulmonary infections. In these diseases large amounts of mucus are produced which congest the bronchi. A major glycosaminoglycan constituent of this mucus is hyaluronic acid, one of the largest molecules in nature; its metabolic degradation is carried out by 3 acid hydrolases: hyaluronidase, beta-N-acetylglucosaminidase, and beta-glucuronidase. In the lung these enzymes are especially synthesized and active in alveolar macrophages. It was thus interesting to study the effect of RU 41740 administration on the hyaluronic acid-degrading activity of these cells. This compound was given by gastric gavage to rats and the activities of lung alveolar macrophage and alveolar fluid hyaluronidase, beta-N-acetylglucosaminidase, beta-glucuronidase, and acid phosphatase as a lysosomal marker were determined. The effect on macrophage proliferation was also examined. The results obtained showed that: (1) unstimulated alveolar macrophages display the remarkable property, compared with other cell types, that hyaluronidase activity is about equally distributed between the inside and the outside of the cell; (2) RU 41740 administration increases the total activity of the 4 enzymes studied in the alveolar macrophages without inducing any increase in the number of macrophages; (3) the intracellular activities of beta-N-acetylglucosaminidase and beta-glucuronidase are markedly increased, whereas intracellular hyaluronidase activity is not changed. However, in the extracellular fluid only hyaluronidase activity is highly increased; (4) even the lysosomal marker enzyme acid phosphatase has only its intracellular activity increased. This would suggest the possibility that other lysosomal enzymes may also be increased by this immunomodulator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Changes in enzyme activities of the plasma membrane makers were examined during phagocytosis using guinea-pig polymorphonuclear neutrophils. Incubation of neutrophils with fresh serum-opsonized zymosan particles showed a significant reduction in leucine aminopeptidase activity, whereas 5′-nucleotidase and alkaline phosphodieterase activities remained unchanged. Inactivation of leucine aminopeptidase activity was also observed by exposure of neutrophils to complement-opsonized zymosan particles, but not to non-opsonized zymosan, IgG-coated zymosan or polysterene latex particles. Pretreatment of neutrophils with cytochalasin B, which prevents phagocytosis but not surface binding of particles, provoked inactivation to the same degree as when the cells were allowed to phagocytose the particles. However, the inactivation during phagocytosis was protected by serine protease inhibitors. These findings suggest that loss of leucine aminopeptidase activity from phagocytosing cells may be mediated by certain serine protease inhibitor-sensitive factor(s) which are probably activated by the attachment of an opsonized zymosan particle to a specific membrane receptor, probably the C3b receptor.  相似文献   

16.
The initial events during phagocytosis of latex beads by mouse peritoneal macrophages were visualized by high-resolution electron microscopy of platinum replicas of freeze-dried cells and by conventional thin-section electron microscopy of macrophages postfixed with 1% tannic acid. On the external surface of phagocytosing macrophages, all stages of particle uptake were seen, from early attachment to complete engulfment. Wherever the plasma membrane approached the bead surface, there was a 20-nm-wide gap bridged by narrow strands of material 12.4 nm in diameter. These strands were also seen in thin sections and in replicas of critical-point-dried and freeze-fractured macrophages. When cells were broken open and the plasma membrane was viewed from the inside, many nascent phagosomes had relatively smooth cytoplasmic surfaces with few associated cytoskeletal filaments. However, up to one-half of the phagosomes that were still close to the cell surface after a short phagocytic pulse (2-5 min) had large flat or spherical areas of clathrin basketwork on their membranes, and both smooth and clathrin-coated vesicles were seen fusing with or budding off from them. Clathrin-coated pits and vesicles were also abundant elsewhere on the plasma membranes of phagocytosing and control macrophages, but large flat clathrin patches similar to those on nascent phagosomes were observed only on the attached basal plasma membrane surfaces. These resulted suggest that phagocytosis shares features not only with cell attachment and spreading but also with receptor-mediated pinocytosis.  相似文献   

17.
M Kalina  D Levi  S Riklis 《Histochemistry》1990,95(1):97-103
Alveolar type II like cells (ALT II) represent a small subpopulation of alveolar type II cells, which is able to proliferate, can be passaged and possess many characteristics of differentiated adult type II cells. A correlation was found between the growth and development of ALT II cells in culture and their alkaline phosphatase activity. Unlike alveolar type II cells, which lose the activity in culture, ALT II cells regain the activity and maintain it for a long culture period. Quantitative histochemical analysis of the stained cells indicate that 80% of the cells at days 15-20 in culture are alkaline phosphatase positive. Inhibition studies indicate that alkaline phosphatase from ALT II cells and freshly isolated type II cells were similar. The inhibition of ALT II alkaline phosphatase by L-levamisole and its heat stability are similar to that of the bone enzyme and differ from the intestinal enzyme. Alkaline phosphatase expression is considered part of the differentiated phenotype of these cells. Therefore, the presence of this enzyme in ALT II cells adds support to the notion that these cells maintain many aspects of mature alveolar type II cells.  相似文献   

18.
The effect of surface tension on alveolar macrophage shape and phagocytosis was assessed in vivo and in vitro. Surface tension was regulated in vivo by conditionally expressing surfactant protein (SP)-B in Sftpb-/- mice. Increased surface tension and respiratory distress were produced by depletion of SP-B and were readily reversed by repletion of SP-B in vivo. Electron microscopy was used to demonstrate that alveolar macrophages were usually located beneath the surfactant film on the alveolar surfaces. Reduction of SP-B increased surface tension and resulted in flattening of alveolar macrophages on epithelial surfaces in vivo. Phagocytosis of intratracheally injected fluorescent microbeads by alveolar macrophages was decreased during SP-B deficiency and was restored by repletion of SP-B in vivo. Incubation of MH-S cells, a mouse macrophage cell line, with inactive surfactant caused cell flattening and decreased phagocytosis in vitro, findings that were reversed by the addition of sheep surfactant or phospholipid containing SP-B. SP-B controls surface tension by forming a surfactant phospholipid film that regulates shape and nonspecific phagocytic activity of alveolar macrophages on the alveolar surface.  相似文献   

19.
The rate of immunological and non-immunological phagocytosis of staphylococci by lipase pre-treated human granulocytes and monocytes was compared. It was found that the effect of this enzyme on two types of cells is opposite. Lipase decreases phagocytosis by granulocytes and increases by monocytes. The revealed differences between phagocytosing cells studied prompted us to investigate the influence of lipase on Fc receptors on these cells (rosette EA test). The different susceptibility of Fc receptors on non-activated phagocytes to lipase was found. This could be at least partially responsible for the difference observed between phagocytic activity of granulocytes (decreased) and monocytes (increased) pretreated with staphylococcal lipase. Inactivated enzyme showed a similar effect as active enzyme in the case of granulocytes. However, inactivated enzyme had no effect on rosette formation by lipase pretreated monocytes, indicating an enzymatic effect.  相似文献   

20.
Cyclic AMP (cAMP) regulates many biological processes and cellular functions. The importance of spatially localized intracellular gradients of cAMP is increasingly appreciated. Previous work in macrophages has shown that cAMP is produced during phagocytosis and that elevated cAMP levels suppress host defense functions, including generation of proinflammatory mediators, phagocytosis and killing. However, the spatial and kinetic characteristics of cAMP generation in phagocytosing macrophages have yet to be examined. Using a Förster resonance energy transfer (FRET)-based cAMP biosensor, we measured the generation of cAMP in live macrophages. We detected no difference in bulk intracellular cAMP levels between resting cells and cells actively phagocytosing IgG-opsonized particles. However, analysis with the biosensor revealed a rapid decrease in FRET signal corresponding to a transient burst of cAMP production localized to the forming phagosome. cAMP levels returned to baseline after the particle was internalized. These studies indicate that localized increases in cAMP accompany phagosome formation and provide a framework for a more complete understanding of how cAMP regulates macrophage host defense functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号