首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

2.
3.
We studied the composition of molecular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in normal and streptozotocin-induced diabetic rat retinal pigment epithelium (RPE). Tissues were sequentially extracted with saline (S(1)) and saline-detergent buffers (S(2)). About a 50% decrease in AChE molecular forms was observed in the diabetic RPE compared to the controls. Approximately 70% of the BChE activity in normal RPE was brought into solution and evenly distributed in S(1) and S(2). Analysis of the fractions from RPE revealed the presence of G(A)(1), G(A)(4) and a small proportion of G(H)(4) BChE forms in S(1); whereas G(A)(4) and G(A)(1) molecules predominate in S(2). A 40% decrease in the activity of G(A)(4) in S(2) was observed in the diabetic RPE. Our results show that diabetes caused a remarkable decrease in the activity of cholinesterases molecular forms in the RPE. This might be related to the alterations observed in diabetic retinopathy.  相似文献   

4.
Differences were observed in the extent of thermal inactivation of human butyrylcholinesterase (BuChE) and eel acetylcholinesterase (AChE). BuChE was more resistant to 57°C inactivation than was AChE. Thermal inactivation of BuChE was reversible and followed first-order kinetics. AChE thermal inactivation was irreversible and did not follow first-order kinetics. AChE was marginally protected from thermal inactivation by the nonspecific salts ammonium sulfate and sodium chloride and to a greater extent by the active site-specific salts choline chloride, sodium acetate, and acetylcholine iodide. This protection was accompanied by a loss of absorbance at 280 nm. This data supports the hypothesis that thermal inactivation of AChE occurs by conformational scrambling and that aromatic amino acid residue(s) are involved in this process.Recipient of a research fellowship from the UNCW graduate school.  相似文献   

5.
The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

6.
Molecular forms of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) differ in their solubility properties as well as in the number of their catalytic subunits. We used monoclonal antibodies to investigate the structure of acetylcholinesterase forms in brain, erythrocytes and serum of rats, rabbits and other mammals. Two antibodies were found to bind tetrameric acetylcholinesterase in preference to the monomeric enzyme. These antibodies also displayed lower affinity for certain forms of 'soluble' brain acetylcholinesterase than for the 'membrane-associated' counterparts. Furthermore, one of them was virtually lacking in affinity for the membrane-associated enzyme of erythrocytes. The basis for the antibody specificity was not fully determined. However, the immunochemical results were supported by measurements of enzyme thermolability, which showed that the catalytic activity of 'soluble' acetylcholinesterase was comparatively heat-resistant. These observations point toward structural differences among the solubility classes of acetylcholinesterase.  相似文献   

7.
The molecular pathology of Alzheimer's disease.   总被引:91,自引:0,他引:91  
D J Selkoe 《Neuron》1991,6(4):487-498
  相似文献   

8.
We have isolated a COOH-terminal tryptic peptide from the hydrophobic globular (5.6 S) form of Torpedo californica acetylcholinesterase that exhibits divergence in amino acid sequence from the catalytic subunit of the dimensionally asymmetric (17 S + 13 S) enzyme. The divergent peptide could be recovered from the glycophospholipid-modified 5.6 S enzyme only after treatment with phosphatidylinositol-specific phospholipase C. Upon reduction, carboxymethylation with [14C]iodoacetate, and trypsin digestion the resultant peptides were purified by gel filtration followed by high performance liquid chromatography. The high performance liquid chromatography profiles of 14C-labeled cysteine peptides from lipase-treated 5.6 S enzyme revealed unique radioactive peaks which had not been present in digests of the asymmetric form. These peaks all yielded identical amino acid sequences. The difference in chromatographic behavior of the individual peptides most likely reflects heterogeneity in post-translational processing. Gas-phase sequencing and composition analysis are consistent with the sequence: Leu-Leu-Asn-Ala-Thr-Ala-Cys. Composition includes 2-3 mol each of glucosamine and ethanolamine which is indicative of modification by glycophospholipid. Glucosamine is also present in an asparagine-linked oligosaccharide. The two forms of acetylcholinesterase diverge after the threonine residue within this peptide sequence; the hydrophobic form terminates with cysteine whereas the asymmetric form extends for 40 residues beyond the divergence. The locus of divergence and absence of any other amino acid sequence difference suggest that the molecular forms of acetylcholinesterase arise from a single gene by alternative mRNA processing.  相似文献   

9.
Molecular forms of acetylcholinesterases in Alzheimer's disease   总被引:2,自引:0,他引:2  
In this study, we examined 26 cases of Alzheimer's disease (AD) and 14 age-matched controls. In Brodmann area 21 cerebral cortex of the AD cases, there was no change in soluble G1 and G4 acetylcholinesterase (AChE) (EC 3.1.1.7), a significant 40% decrease in membrane-associated G4 AChE, significant 342 and 406% increases in A12 and A8 AChE, and a significant 71% decrease in choline acetyltransferase (ChAT) (EC 2.3.1.6). Our working hypothesis to account for these changes postulates that soluble globular forms are unchanged because they are primarily associated with intrinsic cortical neurons that are relatively unaffected by AD, that ChAT and membrane-associated G4 AChE decrease because they are primarily associated with incoming axons of cholinergic neurons that are abnormal in AD, and that asymmetric forms of AChE increase because of an acrylamide-type impairment of fast axonal transport in diseased incoming cholinergic axons. In the nucleus basalis of Meynert (nbM) of the 26 AD cases, there was a significant 61% decrease in the number of cholinergic neurons, an insignificant 23% decrease in nbM ChAT, a significant 298% increase in nbM ChAT per cholinergic neuron, and a significant 7% increase in the area of cholinergic perikarya. To account for the increased ChAT in cholinergic neurons and the enlargement of cholinergic perikarya, we propose that slow axonal transport may be impaired in nbM cholinergic neurons in AD.  相似文献   

10.
L Zemach  D Segal  Y Shalitin 《FEBS letters》1990,263(1):166-168
The diuretic drug amiloride was found to be a powerful inhibitor of the reaction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with their specific choline ester substrates. The inhibition constant is in the micromolar range. On the other hand, when added to a mixture of cholinesterase (AChE and BChE) and neutral substrates, amiloride, in some cases, enhanced the reaction rate. The rate of the reaction of butyrylcholinesterase with p-nitrophenyl butyrate was increased up to 12 fold by amiloride.  相似文献   

11.
S-mercuric-N-dansylcysteine was investigated as a potential probe of protein sulphydryl groups using bovine serum albumin, S-carboxymethyl-bovine serum albumin, lysozyme, and partially reduced lysozyme as test proteins. Criteria used to assess covalent binding through mercury-bridged mercaptide linkages include a finite reaction time (minutes to hours), abolition of the characteristic fluorescence spectrum following addition of a reducing agent, and failure to separate probe and protein after chromatography or electrophoresis. By these criteria, both Torpedo californica acetylcholinesterase and human serum cholinesterase (butyrylcholinesterase) contain four free sulphydryl groups per tetrameric enzyme molecule whereas Electrophorus electricus acetylcholinesterase has none. Labeled acetylcholinesterase and butyrylcholinesterase remain active and responsive to the inactivator Zn2+. Zn2+ promotes an increase in the fluorescence of bound S-mercuric-N-dansylcysteine, whereas activators such as Mg2+ or gallamine promote a decrease, suggesting that the label may be a useful probe of ligand-induced conformational changes. With T. californica acetylcholinesterase, but not with human serum cholinesterase, Zn2+ also promotes access to two additional groups that are reactive towards the sulphydryl reagent.  相似文献   

12.
It is currently thought that Alzheimer's disease develops due to aberrant generation of amyloid-beta peptides. However, the mechanisms underlying the aberrant generation of amyloid-beta peptides remain unknown. An emerging concept suggests that impaired axonal transport may play a pivotal role in the aberrant generation of amyloid-beta peptides. Here we review and discuss advances in understanding AD with the primary focus on the possible role of molecular motors and axonal transport in its pathogenesis.  相似文献   

13.
Multiple molecular forms of acetylcholinesterase (AChE EC 3.1.1.7) from fast and slow muscle of rat were examined by velocity sedimentation. The fast extensor digitorum longus muscle (EDL) hydrolyzed acetylcholine at a rate of 110 mumol/g wet weight/hr and possessed three molecular forms with apparent sedimentation coefficients of 4S, 10S, and 16S which contribute about 50, 35, and 15% of the AChE activity. The slow soleus muscle hydrolyzed acetylcholine at a rate of 55 mumol/g wet weight/hr and has a 4S, 10S, 12S, and 16S form which contribute 22, 18, 34, and 26% of AChE activity, respectively. A single band of AChE activity was observed when a 1M NaCl extract with CsCl (0.38 g/ml) was centrifuged to equilibrium. Peak AChE activity from EDL and SOL extracts were found at 1.29 g/ml. Resedimentation of peak activity from CsCl gradients resulted in all molecular forms previously found in both muscles. Addition of a protease inhibitor phenylmethylsulfonyl chloride did not change the pattern of distribution. The 4S form of both muscles was extracted with low ionic strength buffer while the 10S, 12S, and 16S forms required high ionic strength and detergent for efficient solubilization. All molecular forms of both muscles have an apparent Km of 2 x 10(-4) M, showed substrate inhibition, and were inhibited by BW284C51, a specific inhibitor of AChE. The difference between these muscles in regards to their AChE activity, as well as in the proportional distribution of molecular forms, may be correlated with sites of localization and differences in the contractile activity of these muscles.  相似文献   

14.
This study compared obese (N = 134) and unobese (N = 92) male blood donors, regarding the relative intensity (RI) and activity of different molecular forms (G1, G2, G4 and G1-ALB) of butyrylcholinesterase (BChE, EC 3.1.1.8) found in plasma, thereby searching for an association between these variables with obesity and SNPs of exons 1 and 4 of the BCHE gene. It was shown that obese and unobese individuals do not differ in the RI of each BChE band, even when classifying the sample into three genotypes of exons 1 and 4 of the BCHE gene (-116GG/539AA, -116GG/539AT, -116GA/539AT). Although the mean BChE activity of each band was significantly higher in obese than in unobese blood donors, the proportions of BChE bands were maintained, even under the metabolic stress associated to obesity, thereby leading to infer that this proportion is somehow regulated, and may therefore be important for BChE functions.  相似文献   

15.
Protein levels of different acetylcholinesterase (AChE) splice variants were explored by a combination of immunoblot techniques, using two different antibodies, directed against the C-terminus of the AChE-R splice variant or the core domain common to all variants. Both AChE-R and AChE-S splice variants as well as several heavier AChE complexes were detected in brain homogenates from the parietal cortex of patients with or without Alzheimer's disease (AD) as well as the cerebrospinal fluid (CSF) of AD patients, compatible with the assumption that CSF AChEs might originate from CNS neurons. Long-term changes in the composition of CSF AChE variants were further pursued in AD patients treated with rivastigmine (n = 11) or tacrine (n = 17) in comparison to untreated AD patients (n = 5). In untreated patients, AChE-R was markedly reduced as compared with the baseline level (37%), whereas the medium size AChE-S complex was increased by 32%. Intriguingly, tacrine produced a general and profound up-regulation of all detected AChE variants (up to 117%), whereas rivastigmine treatment caused a mild and selective up-regulation of AChE-R ( approximately 10%, p < 0.05). Moreover, the change in the ratio of AChE-R to AChE-S (R/S-ratio) strongly and positively correlated with sustained cognition at 12 months (p < 0.0001). Thus, evaluation of changes in the composition of CSF AChE variants may yield important information referring to the therapeutic efficacy and/or development of drug tolerance in AD patients treated with anti-cholinesterases.  相似文献   

16.
The severity of poisoning following acetylcholinesterase (AChE) inhibition correlates weakly with total AChE activity. This may be partly due to the existence of functional and non-functional pools of AChE. AChE consists of several molecular forms. The aim of the present study was to investigate which of these forms will correlate best with neuromuscular transmission (NMT) remaining after partial inhibition of this enzyme. Following sublethal intoxication of rats with the irreversible AChE inhibitor soman, diaphragms were isolated after 0.5 or 3 h. It appeared that at 3 h after soman poisoning the percentage of G1 increased, while those of G4 and A12 decreased. NMT was inhibited more strongly than in preparations obtained from the 0.5 h rats with the same level of AChE inhibition, but with a normal ratio of molecular forms. NMT correlated positively with G4 as well as with A12, but inversely with G1. In vitro inhibition with the charged inhibitors DEMP and echothiophate resulted in higher levels of total AChE, relatively less G1 and more G4 and A12 than after incubation with soman, but led to less NMT. Treatment of soman-intoxicated rats with the reactivating compound HI-6 resulted in preferential reactivation of A12, persisting low levels of G1 and concurrent recovery of NMT as compared with saline-treated soman controls with equal total AChE activity. Apparently, in rat diaphragm G4 and A12 are the functional AChE forms.  相似文献   

17.
杨磊  张学军 《生命科学》2002,14(4):201-203
乙酰胆碱酯酶(acetylcholinesterase,AChE)是主要存在于神经系统的一种水解酶,其经典功能是水解神经递质乙酰胆碱,从而终止神经冲动的传递。但是近年来,研究者发现许多证据表明它具有“非经典”的新功能,引起了人们的关注。除了水解神经递质乙酰胆碱的经典功能外,AChE对神经细胞的分化、迁移,突触的形成,造血系细胞和肿瘤细胞的增殖与分化调控也有作用。最近的研究结果显示:AChE可能在细胞凋亡过程中起重要作用,这对于认识Alzheimer‘s疾病(AD)的发病机理又有新的进步。  相似文献   

18.
To establish if the predominant form of acetylcholinesterase in muscle microsomes (4.8S) corresponded to the monomeric or dimeric form of the enzyme we studied the sensitivity to heating of Triton X-100 solubilized extract and that of 4.8S, 10-11S and 13.5S species of the enzyme. Inactivation of soluble acetylcholinesterase began at 45-47 degrees C and was almost complete at 60 degrees C. Sedimentation analysis revealed that the partial loss of activity was due to inactivation of the 4.8S form, although by heating the 13.5S was converted into the 10S enzyme. Inactivation of the 4.8S form began at 45 degrees C, whereas the larger forms required higher temperature. The 4.8S component follows a time course of inactivation which could be fitted by a double exponential equation (when heated at 52 degrees C, almost 83% of the activity showed a short half-life). The 10-11S species was also inactivated following a two step process while the 13.5S enzyme was fairly stable at 52 degrees C. The results show that the lightest component behaves as a monomeric form of acetylcholinesterase.  相似文献   

19.
Summary The mucosal cells of the chicken intestine contain a cholinesterase activity essentially due to butyrylcholinesterase. The enzyme is present during embryonic and post-hatching development. The activity reaches a maximum value at day 19 in ovo and decreases prior to and after hatching up to day 4 ex ovo. Then the activity again rises reaching a second maximum at 2–3 weeks. Beyond this stage, the activity slowly decreases leveling off to the value determined in adult chicken. The enzyme exists as two globular forms (G1 and G4) soluble at low-ionic strengths. The G4 form is predominant in ovo up to day 19. From this stage and after hatching the G1 form is the main one. This change in the form proportion differentiates the mucosal cell butyrylcholinesterase from butyrylcholinesterase of other origins such as the chicken plasma enzyme which always shows a predominant G4 form.Abbreviations AChE Acetylcholinesterase - BuChE Butyrylcholinesterase  相似文献   

20.
Summary. We observed here that acute proline (Pro) administration provoked a decrease (32%) of acetylcholinesterase (AChE) activity in cerebral cortex and an increase (22%) of butyrylcholinesterase (BuChE) activity in the serum of 29-day-old rats. In contrast, chronic administration of Pro did not alter AChE or BuChE activities. Furthermore, pretreatment of rats with vitamins E and C combined or alone, N-nitro-L-arginine methyl ester or melatonin prevented the reduction of AChE activity caused by acute Pro administration, suggesting the participation of oxidative stress in such effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号