首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Gail M. Simmons 《Genetics》1986,114(3):897-918
Three populations of Drosophila melanogaster from northern California were surveyed for the ability to produce and resist gonadal dysgenesis in the P-M system of hybrid dysgenesis. Males from all three populations produced low to moderate levels of gonadal dysgenesis in crosses to Oregon-R M females. Most females had the P cytotype, but the M cytotype occurred occasionally. The three populations could not be statistically differentiated from one another, but were easily distinguished from populations from Australia and Wisconsin on the basis of gonadal dysgenesis potential. The California populations had higher levels of M cytotype than did the Wisconsin population. Thirteen X chromosomes and 11 pairs of autosomes were extracted from one of the California populations, using a modification of the standard balancer chromosome technique to suppress hybrid dysgenesis during extraction. All lines produced strongly skewed sterility distributions in crosses to M-strain females, and mean levels of sterility were less than 50%. There was evidence of nonadditive interactions between the autosomes. Most extraction lines had the P cytotype, but M and intermediate cytotypes were observed. Some of the intermediate cytotypes were stable over time. Lines were tested at two different times after extraction. Some lines evolved higher sterility potential as they were kept in the laboratory, even in the presence of P cytotype. The results point out a number of deficiencies in current genetic and population genetic models of hybrid dysgenesis and imply that gonadal dysgenesis is unlikely to be an important evolutionary force in this population.  相似文献   

2.
Inbred wild strains of Drosophila melanogaster derived from the central and eastern United States were used to make dysgenic hybrids in the P-M system. These strains possessed P elements and the P cytotype, the condition that represses P element transposition. Their hybrids were studied for the mutability of the P element insertion mutation, snw, and for the incidence of gonadal dysgenesis (GD) sterility. All the strains tested were able to induce hybrid dysgenesis by one or both of these assays; however, high levels of dysgenesis were rare. Sets of X chromosomes and autosomes from the inbred wild strains were more effective at inducing GD sterility than were sets of Y chromosomes and autosomes. In two separate analyses, GD sterility was positively correlated with snw mutability, suggesting a linear relationship. However, one strain appeared to induce too much GD sterility for its level of snw destabilization, indicating an uncoupling of these two manifestations of hybrid dysgenesis.  相似文献   

3.
Kidwell MG  Kidwell JF  Sved JA 《Genetics》1977,86(4):813-833
A syndrome of associated aberrant traits is described in Drosophila melanogaster. Six of these traits, mutation, sterility, male recombination, transmission ratio distortion, chromosomal aberrations and local increases in female recombination, have previously been reported. A seventh trait, nondisjunction, is described for the first time. All of the traits we have examined are found nonreciprocally in F(1) hybrids. We present evidence that at least four of the traits are not found in nonhybrids. Therefore we have proposed the name hybrid dysgenesis to describe this syndrome.-A partition of tested strains into two types, designated P and M, was made according to the paternal or maternal contribution required to produce hybrid dysgenesis. This classification seems to hold for crosses of strains from within the United States and Australia, as well as for crosses between strains from the two countries. Strains collected recently from natural populations are typically of the P type and those having a long laboratory history are generally of the M type. However, a group of six strains collected from the wild in the 1960's are unambiguously divided equally between the P and M types. The dichotomy of this latter group raises interesting questions concerning possible implications for speciation.-Temperature often has a critical effect on the manifestation of hybrid dysgenesis. High F(1 ) developmental temperatures tend to increase the expression of sterility, sometimes to extreme levels. Conversely, low developmental temperatures tend to inhibit the expression of some dysgenic traits.-There are potentially important practical implications of hybrid dysgenesis for laboratory experimentation. The results suggest that care should be exercised in planning experiments involving strain crosses.  相似文献   

4.
The male recombination factor 23.5MRF, isolated ten years ago from a natural Greek population of Drosophila melanogaster, has been shown to induce hybrid dysgenesis when crossed to some M strains, in a fashion slightly different from that of most P strains. Furthermore, it was recently shown that 23.5MRF can also induce GD sterility when crossed to specific P strain females (e.g., Harwich, pi 2 and T-007). In these experiments, the P strains mentioned behaved like M strains in that they did not induce sterility in the reciprocal crosses involving 23.5MRF. We extended the analysis to show that 23.5MRF does not destabilize snW(M) and that a derivative with fewer full-length P elements behaves like an M strain toward the same P strains and still retains its dysgenic properties in the reciprocal crosses. We show that there is a strong correlation between the site of dysgenic chromosomal breakpoints induced by 23.5MRF and the localization of hobo elements on the second chromosome, and also that hobo elements are found associated with several 23.5MRF induced mutations. These results suggest that hobo elements are responsible for the aberrant dysgenic properties of this strain, and that they may express their dysgenic properties independent of the presence of P elements.  相似文献   

5.
Summary In Drosophila melanogaster, the P-M system of hybrid dysgenesis is a syndrome of germ line abnormalities, including temperature dependent gonadal dysgenesis (GD sterility), high rates of mutation and male recombination, which occurs in some interstrain hybrids but only from one of the two crosses. In the P-M system, hybrid dysgenesis results from interaction between chromosomally transposable elements of the P element family and a particular extrachromosomal state referred to as the M cytotype. Cytotype (M or P) is known to be determined by the absence or presence of chromosomal factors, but principally with limited cytoplasmic transmission.In a series of experiments in which F1 hybrid females from various P and M strains were submitted to different preadult and ageing temperature treatments, it was found that the cytotype switch is strongly temperature-dependent in the F1 females from M x P but not in the reciprocal cross. In the F1 females from the former cross, a strong M cytotype occurs at a low developmental temperature (18° C) and a weak M cytotype occurs at a high developmental temperature (26.5° C). On the other hand, a high ageing temperature applied after a low developmental temperature switches the cytotype from M to P and reciprocally, a low ageing temperature applied after a high developmental temperature switches the cytotype from P to M.This thermo-reversibility of the extrachromosomal state exists only in the F1 females from M mothers but not in the F1 females from P mothers; this dissymmetrical behavior is discussed in relation to the mechanism proposed by O'Hare and Rubin (1983) which explains cytotype determination by a positive feedback of the regulator of the P transposase on its own level of activity.  相似文献   

6.
A Hybrid Dysgenesis Syndrome in Drosophila Virilis   总被引:3,自引:1,他引:2       下载免费PDF全文
A new example of ``hybrid dysgenesis' has been demonstrated in the F(1) progeny of crosses between two different strains of Drosophila virilis. The dysgenic traits were observed only in hybrids obtained when wild-type females (of the Batumi strain 9 from Georgia, USSR) were crossed to males from a marker strain (the long-established laboratory strain, strain 160, carrying recessive markers on all its autosomes). The phenomena observed include high frequencies of male and female sterility, male recombination, chromosomal nondisjunction, transmission ratio distortion and the appearance of numerous visible mutations at different loci in the progeny of dysgenic crosses. The sterility demonstrated in the present study is similar to that of P-M dysgenesis in Drosophila melanogaster and apparently results from underdevelopment of the gonads in both sexes, this phenomenon being sensitive to developmental temperature. However, in contrast to the P-M and I-R dysgenic systems in D. melanogaster, in D. virilis the highest level of sterility (95-98%) occurs at 23-25°. Several of the mutations isolated from the progeny of dysgenic crosses (e.g., singed) proved to be unstable and reverted to wild type. We hypothesize that a mobile element (``Ulysses') which we have recently isolated from a dysgenically induced white eye mutation may be responsible for the phenomena observed.  相似文献   

7.
A model of the P-M system of hybrid dysgenesis is presented which incorporates single-site transposition of P factors in M cytotype, determination of offspring cytotype by both maternal cytotype and maternal or offspring nuclear genotype, and strong fertility selection in dysgenic individuals. The conditions required for the initial invasion of P factors into a pure M population, information concerning stable polymorphisms, and results of numerical iterations depicting the dynamic, nonequilibrium behavior of the system are summarized. While conditions for initial increase are independent of the rate of cytotype switching, the rate of evolution is accelerated by increased production of dysgenic individuals. If the transposition rate is sufficiently high to overcome the fertility barrier opposing P factors introduced into M populations, then convergence to high frequencies of the P factor occurs very rapidly. Under intense fertility depression, the phase of rapid increase may be preceded by an extended period of gradual increase at low frequencies.  相似文献   

8.
Strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF induce hybrid dysgenesis in a way which is highly reminiscent of the P-M system, and, most probably, causally related to the activity of the transposable element hobo. We have investigated potential interactions between the two systems of hybrid dysgenesis by studying mixed lines derived from bidirectional crosses between 23.5 MRF and P strains, and analyzed their potentials to induce or suppress the occurrence of dysgenesis. All new lines possess the P induction abilities, as determined by two different procedures, and have also acquired a P cytotype. In contrast, some of them lost their ability to induce the non-P-M dysgenesis, as well as to suppress the action of 23.5 MRF. This loss of the 23.5 MRF induction abilities parallels the selective loss of full-length hobo elements from the genome of these lines, providing further substantiation to the notion that the 23.5 MRF activity is directly linked to this transposable element.  相似文献   

9.
10.
Kidwell MG  Novy JB 《Genetics》1979,92(4):1127-1140
Crosses between two types of strains, called P and M, characteristically give high frequencies of F(1) sterility and other aberrant traits. Previous studies indicated that, in addition to the direction of the parental cross, many factors influence the manifestation of this phenomenon known as "hybrid dysgenesis."-The present study is concerned with the characteristics of GD (gonadal dysgenesis) sterility associated with the P-M system and its temperature dependence. Female sterility is accompanied by a complete absence of egg-laying, and this is not attributable to an inability to mate. Thus, it seems likely that sterility results from a defect in gametogenesis of hybrid individuals. This conclusion is supported by the morphological and cytological observations presented in an accompanying paper (Schaefer, Kidwell and Fausto-Sterling 1979).-A narrow, critical, developmental temperature range was found in which both female and male sterility rose sharply from a low level to a high maximum. The critical range was 27 to 29 degrees for males, slightly higher than the range of 24 to 26 degrees for females. Two other dysgenic traits, male recombination and transmission ratio distortion, were affected by developmental temperature, but temperature response curves were quite different from those for sterility. The temperature-sensitive stage for female sterility occurs during embryonic and early larval development.-GD sterility is compared and contrasted with SF sterility, another specific type of non-Mendelian sterility resulting from a different interstrain dysgenic interaction.  相似文献   

11.
Seventeen highly-inbred lines of Drosophila melanogaster extracted from an M' strain (in the P/M system of hybrid dysgenesis) were studied for their cytotype and the number and chromosomal location of complete and defective P elements. While most lines were of M cytotype, three presented a P cytotype (the condition that represses P-element activity) and one was intermediate between M and P. All lines were found to possess KP elements and only eight to bear full-sized P elements. Only the lines with full-sized P elements showed detectable changes in their P-insertion pattern over generations; their rates of gain and of loss of P-element sites were equal to 0.12 and 0.09 per genome, per generation, respectively. There was no correlation between these two rates within lines, suggesting independent transpositions and excisions in the inbred genomes. The results of both Southern blot analysis and in situ hybridization of probes made from left and right sides of the P element strongly suggested the presence of a putative complete P element in region 1A of the X chromosome in the three lines with a P cytotype; the absence of P copy in this 1A region in lines with an M cytotype, favours the hypothesis that the P element inserted in 1A could play a major role in the P-cytotype determination. Insertion of a defective 2 kb P element was also observed in region 93F in 9 of the 13 M lines. The regulation of the P-element copy number in our lines appeared not to be associated with the ratio of full-length and defective P elements.  相似文献   

12.
An inbred line of the M' strain Muller-5 Birmingham was studied for its abilities to affect P-M hybrid dysgenesis. This strain possesses 57 P elements, all of which are apparently defective in the production of the P transposase. In combination with transposase-producing elements, these nonautonomous elements can enhance or diminish the incidence of hybrid dysgenesis, depending on the trait that is studied. Dysgenic flies that have one or more paternally-derived chromosomes with these elements partially repress the instability of the P element insertion mutation, snw; however, such flies have elevated frequencies of another dysgenic trait, GD sterility, and also show distorted segregation ratios. An explanation is presented in which all of these phenomena are unified as manifestations of the kinetics of P element activation in the germ line. The progeny of Muller-5 Birmingham females exhibit partial repression of both snw instability and GD sterility. This repression appears to involve a factor that can be transmitted maternally through at least two generations. This mode of repression therefore conforms to the pattern of inheritance of the P cytotype, the condition that brings about nearly total repression of P element activity in some strains. Models in which this repression could arise from the nonautonomous P elements of Muller-5 Birmingham are discussed.  相似文献   

13.
M. G. Kidwell  K. Kimura    D. M. Black 《Genetics》1988,119(4):815-828
P elements were introduced into M strain genomes by chromosomal contamination (transposition) from P strain chromosomes under conditions of P-M hybrid dysgenesis. A number of independently maintained contaminated lines were subsequently monitored for their ability to induce gonadal (GD) sterility in the progeny of reference crosses, over a period of 60 generations, in two experiments. The efficiency of chromosomal contamination was high; all tested lines acquired P elements following the association of M and P chromosomes in the same genome for a single generation. All the contaminated lines also sustained an initial unstable phase, marked by high frequencies of transposition and sterility within lines, in the absence of P element regulation. Subsequently, each of the lines rapidly evolved to one of three relatively stable strain types whose phenotypic and molecular properties correspond rather closely to those of the P, Q and M' strains that have previously been characterized. The numbers and structures of P elements and the presence or absence of P element regulation during the early generations appeared to be critical factors determining the subsequent course of evolution. On the basis of GD sterility frequencies, both the mean level of P activity, and the average capacity for P element regulation, were reduced in lines raised at 25 degrees, relative to those raised at 20 degrees, during the early generations. This latter result is consistent with the expectation that natural selection will tend to modify the manifestation of dysgenic traits, such as high temperature sterility, which cause a reduction of fitness. However, overall, stochastic factors appeared to predominate in determining the course of evolution of individual lines.  相似文献   

14.
In Drosophila melanogaster, transposition of the P element is under the control of a cellular state known as cytotype. The P cytotype represses P transposition whereas the M cytotype is permissive for transposition. In the long-term, the P cytotype is determined by chromosomal P elements but over a small number of generations it is maternally inherited. In order to analyse the nature of this maternal inheritance, we tested whether a maternal component can be transmitted without chromosomal P elements. We used a stable determinant of P cytotype, linked to the presence of two P elements at the tip of the X chromosome (IA site) in a genome devoid of other P elements. We measured P repression capacity using two different assays: gonadal dysgenic sterility (GD) and P-lacZ transgene repression. We show that zygotes derived from a P cytotype female (heterozygous for P (1A)/balancer devoid of P copies) and which inherit no chromosomal P elements from the mother, have, however, maternally received a P-type extra-chromosomal component: this component is insufficient to specify the P cytotype if the zygote formed does not carry chromosomal P elements but can promote P cytotype determination if regulatory P elements have been introduced paternally. We refer to this strictly extra-chromosomally inherited state as the “pre-P cytotype”. In addition, we show that a zygote that has the pre-P cytotype but which has not inherited any chromosomal P elements, does not transmit the pre-P cytotype to the following generation. The nature of the molecular determinants of the pre-P cytotype is discussed.  相似文献   

15.
Summary Hybrid dysgenesis inDrosophila melanogaster is a syndrome of germline abnormalities including temperature-dependent gonadal dysgenesis (GD sterility), high rates of mutation and male recombination. In theP-M system, hybrid dysgenesis results from interaction between chromosomally-linked factors (P factors) and a particular extrachromosomal state refered to as theM cytotype. TheT007/Cy strain, shown by other authors to induce a high level of mutation and male recombination, is presently studied with respect to gonadal dysgenesis. TheP activity appears mainly linked with theT007 second chromosome and has been essentially mapped to a 0.6 centimorgan long interval, i.e. betweenhk andpr. On the other hand, 14 strains balanced for deficiencies on the left arm of the second chromosome are studied for their relative level ofM cytotype activity.In F1 females, inheriting the same maternal cytotype and the same paternalT007 chromosome, significant differences inGD sterility are found between flies receiving the maternal deficiency and those receiving the alternate non-deleted chromosome. This effect appears only when the chromosomes are deleted for a common region (37F5-38A7), suggesting the presence of elements intervening in the determinism ofGD sterility in this zone. As this region is included in the correspondinghk-pr interval (37C1-38B6), these results state the problem of the nature of the elements located in this interval and two hypotheses are discussed.  相似文献   

16.
Margaret G. Kidwell 《Genetics》1985,111(2):337-350
The genetic determination of the control of resistance or susceptibility to germ line changes mediated by P elements was studied in two strains and in derivatives of crosses between them. One strain, characterized as true M, completely lacked P elements. The second strain, pseudo-M (M'), carried a number of P elements, but these did not have the potential to induce the gonadal sterility that is associated with P-M hybrid dysgenesis. Individuals from the true M strain were invariably unable to suppress P factor activity (i.e., all daughters of outcrosses of M females and P males were sterile). In contrast, individuals from the M' strain showed variable degrees of suppression that were manifested in a wide range of gonadal sterility frequencies in standard tests. This continuous distribution pattern was reproducible for more than 25 generations.--The results of the genetic analysis indicate that a strain with a variable degree of suppression of gonadal dysgenesis is not necessarily in a transient state between the extreme conditions of P and M cytotype. A large variance in the ability to suppress gonadal dysgenesis with a mean value intermediate between the extremes of P and M cytotype may be a relatively stable strain characteristic. No reciprocal cross effect was observed in the suppression of sterility of F1 females from M X M' matings. Thus, the existence of M' strains indicates a Mendelian component in P element regulation and suggests that cytotype, which has an extrachromosomal aspect, may be only one of perhaps several mechanisms involved in regulation. Analysis of the effects of individual chromosomes from the M' strain showed that each chromosome contributed to the reduction of gonadal dysgenesis in the progeny of test matings. The results are consistent with a one-component titration model for P element regulation.  相似文献   

17.
Six highly inbred lines of Drosophila melanogaster extracted from an M strain (in the P/M system of hybrid dysgenesis) were studied for the evolution of the number and chromosomal location of complete and defective P elements through generations 52–200. These lines possessed full-sized P elements but differed in their cytotype (M or P). Three lines with P cytotype and full-sized P elements at site 1A had a constant P copy number over generations with low rates of insertion and excision. Three lines with M cytotype and at least one full-sized P element accumulated P copies over the generations and reached a plateau near generation 196, at which rates of transposition and excision were equal to 1.2 × 10–3 to 3 × 10–3 events per element per generation. At that time these three lines still presented an M cytotype, produced transposase, and were able to regulate P copy number. The similarity at equilibrium between insertion and excision rates was exactly what was expected from theoretical models for a self-regulated element. The large number of generations necessary to attain the equilibrium in copy number indicates, however, that caution may be de rigueur when testing theoretical models of copy-number containment based on transposition and excision-rate comparison.  相似文献   

18.
Hybrid dysgenesis-induced response to selection in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, the P-M and I-R systems of hybrid dysgenesis are associated with high rates of transposition of P and I elements, respectively, in the germlines of dysgenic hybrids formed by crossing females of strains without active elements to males of strains containing them. Transposition rates are not markedly accelerated in the reciprocal, nondysgenic hybrids. Previous attempts to evaluate the extent to which hybrid dysgenesis-mediated P transposition contributes to mutational variance for quantitative characters by comparing the responses to selection of P-M dysgenic and nondysgenic hybrids have given variable results. This experimental design has been extended to include an additional quantitative trait and the I-R hybrid dysgenesis system. The selection responses of lines founded from both dysgenic and nondysgenic crosses showed features that would be expected from the increase in frequency of initially rare genes with major effects on the selected traits. These results differ from those of previous experiments which showed additional selection response only in lines started from dysgenic crosses, and can be explained by the occasional occurrence of large effect transposable element-induced polygenic mutations in both dysgenic and nondysgenic selection lines. High rates of transposition in populations founded from nondysgenic crosses may account for the apparently contradictory results of the earlier selection experiments, and an explanation is proposed for its occurrence.  相似文献   

19.
    
In Drosophila melanogaster, transposition of the P element is under the control of a cellular state known as cytotype. The P cytotype represses P transposition whereas the M cytotype is permissive for transposition. In the long-term, the P cytotype is determined by chromosomal P elements but over a small number of generations it is maternally inherited. In order to analyse the nature of this maternal inheritance, we tested whether a maternal component can be transmitted without chromosomal P elements. We used a stable determinant of P cytotype, linked to the presence of two P elements at the tip of the X chromosome (IA site) in a genome devoid of other P elements. We measured P repression capacity using two different assays: gonadal dysgenic sterility (GD) and P-lacZ transgene repression. We show that zygotes derived from a P cytotype female (heterozygous for P (1A)/balancer devoid of P copies) and which inherit no chromosomal P elements from the mother, have, however, maternally received a P-type extra-chromosomal component: this component is insufficient to specify the P cytotype if the zygote formed does not carry chromosomal P elements but can promote P cytotype determination if regulatory P elements have been introduced paternally. We refer to this strictly extra-chromosomally inherited state as the pre-P cytotype. In addition, we show that a zygote that has the pre-P cytotype but which has not inherited any chromosomal P elements, does not transmit the pre-P cytotype to the following generation. The nature of the molecular determinants of the pre-P cytotype is discussed.  相似文献   

20.
The combined effect of X-irradiation and transposon mobility on the frequencies of X-linked recessive lethals and dominant lethals was investigated in female hybrids in the P-M system of hybrid dysgenesis. X-linked lethals were measured in G2 hybrid dysgenic females whose X chromosome was derived from the M X P cross. To test for additivity or synergism, the mutation rate in irradiated dysgenic females was compared to that of unirradiated females as well as to irradiated nondysgenic hybrid females derived from M X M crosses. Eggs collected for 2 days after irradiation, were represented by the more radiation-sensitive A and B oocytes (about 75%) and the least sensitive C oocytes (about 25%). The production of X-linked lethal events in X-irradiated dysgenic females was 8.1%, as compared to 4.5% in dysgenic controls and 3.4% in irradiated, nondysgenic controls, demonstrating an additive effect of radiation and dysgenesis-induced genetic damage. The effect of irradiation on sterility of dysgenic hybrid females was a negative one, resulting in 20% less sterility than expected from an additive effect. The combined effect of radiation and dysgenesis on dominant lethality tested in A, B and C oocytes of the same hybrid females was synergistic. Egg broods collected for 3.5 days after irradiation showed that significantly more damage was induced in the presence of ionizing radiation in dysgenic females than in their nondysgenic counterparts. This effect was most obvious in B and C oocytes. The synergism observed may be related to the inability of cells to repair the increased number of chromosome breaks induced both by radiation and transposon mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号