首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Frankia is a genus of soil actinobacteria forming nitrogen-fixing root-nodule symbiotic relationships with non-leguminous woody plant species, collectively called actinorhizals, from eight dicotyledonous families. Frankia strains are classified into four host-specificity groups (HSGs), each of which exhibits a distinct host range. Genome sizes of representative strains of Alnus, Casuarina, and Elaeagnus HSGs are highly diverged and are positively correlated with the size of their host ranges.

Results

The content and size of 12 Frankia genomes were investigated by in silico comparative genome hybridization and pulsed-field gel electrophoresis, respectively. Data were collected from four query strains of each HSG and compared with those of reference strains possessing completely sequenced genomes. The degree of difference in genome content between query and reference strains varied depending on HSG. Elaeagnus query strains were missing the greatest number (22–32%) of genes compared with the corresponding reference genome; Casuarina query strains lacked the fewest (0–4%), with Alnus query strains intermediate (14–18%). In spite of the remarkable gene loss, genome sizes of Alnus and Elaeagnus query strains were larger than would be expected based on total length of the absent genes. In contrast, Casuarina query strains had smaller genomes than expected.

Conclusions

The positive correlation between genome size and host range held true across all investigated strains, supporting the hypothesis that size and genome content differences are responsible for observed diversity in host plants and host plant biogeography among Frankia strains. In addition, our results suggest that different dynamics of shuffling of genome content have contributed to these symbiotic and biogeographic adaptations. Elaeagnus strains, and to a lesser extent Alnus strains, have gained and lost many genes to adapt to a wide range of environments and host plants. Conversely, rather than acquiring new genes, Casuarina strains have discarded genes to reduce genome size, suggesting an evolutionary orientation towards existence as specialist symbionts.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-609) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms.

Results

The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors.

Conclusions

P. ananatis has an ‘open’ pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-404) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Mycoplasma pneumoniae is a common pathogen that causes upper and lower respiratory tract infections in people of all ages, responsible for up to 40 % of community-acquired pneumonias. It also causes a wide array of extrapulmonary infections and autoimmune phenomena. Phylogenetic studies of the organism have been generally restricted to specific genes or regions of the genome, because whole genome sequencing has been completed for only 4 strains. To better understand the physiology and pathogenicity of this important human pathogen, we performed comparative genomic analysis of 15 strains of M. pneumoniae that were isolated between the 1940s to 2009 from respiratory specimens and cerebrospinal fluid originating from the USA, China and England.

Results

Illumina MiSeq whole genome sequencing was performed on the 15 strains and all genome sequences were completed. Results from the comparative genomic analysis indicate that although about 1500 SNP and indel variants exist between type1 and type 2 strains, there is an overall high degree of sequence similarity among the strains (>99 % identical to each other). Within the two subtypes, conservation of most genes, including the CARDS toxin gene and arginine deiminase genes, was observed. The major variation occurs in the P1 and ORF6 genes associated with the adhesin complex. Multiple hsdS genes (encodes S subunit of type I restriction enzyme) with variable tandem repeat copy numbers were found in all 15 genomes.

Conclusions

These data indicate that despite conclusions drawn from 16S rRNA sequences suggesting rapid evolution, the M. pneumoniae genome is extraordinarily stable over time and geographic distance across the globe with a striking lack of evidence of horizontal gene transfer.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1801-0) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

M. africanum West African 2 constitutes an ancient lineage of the M. tuberculosis complex that commonly causes human tuberculosis in West Africa and has an attenuated phenotype relative to M. tuberculosis.

Methodology/Principal Findings

In search of candidate genes underlying these differences, the genome of M. africanum West African 2 was sequenced using classical capillary sequencing techniques. Our findings reveal a unique sequence, RD900, that was independently lost during the evolution of two important lineages within the complex: the “modern” M. tuberculosis group and the lineage leading to M. bovis. Closely related to M. bovis and other animal strains within the M. tuberculosis complex, M. africanum West African 2 shares an abundance of pseudogenes with M. bovis but also with M. africanum West African clade 1. Comparison with other strains of the M. tuberculosis complex revealed pseudogenes events in all the known lineages pointing toward ongoing genome erosion likely due to increased genetic drift and relaxed selection linked to serial transmission-bottlenecks and an intracellular lifestyle.

Conclusions/Significance

The genomic differences identified between M. africanum West African 2 and the other strains of the Mycobacterium tuberculosis complex may explain its attenuated phenotype, and pave the way for targeted experiments to elucidate the phenotypic characteristic of M. africanum. Moreover, availability of the whole genome data allows for verification of conservation of targets used for the next generation of diagnostics and vaccines, in order to ensure similar efficacy in West Africa.  相似文献   

5.

Background

Bacteriophages that infect the opportunistic pathogen Pseudomonas aeruginosa have been classified into several groups. One of them, which includes temperate phage particles with icosahedral heads and long flexible tails, bears genomes whose architecture and replication mechanism, but not their nucleotide sequences, are like those of coliphage Mu. By comparing the genomic sequences of this group of P. aeruginosa phages one could draw conclusions about their ontogeny and evolution.

Results

Two newly isolated Mu-like phages of P. aeruginosa are described and their genomes sequenced and compared with those available in the public data banks. The genome sequences of the two phages are similar to each other and to those of a group of P. aeruginosa transposable phages. Comparing twelve of these genomes revealed a common genomic architecture in the group. Each phage genome had numerous genes with homologues in all the other genomes and a set of variable genes specific for each genome. The first group, which comprised most of the genes with assigned functions, was named “core genome”, and the second group, containing mostly short ORFs without assigned functions was called “accessory genome”. Like in other phage groups, variable genes are confined to specific regions in the genome.

Conclusion

Based on the known and inferred functions for some of the variable genes of the phages analyzed here, they appear to confer selective advantages for the phage survival under particular host conditions. We speculate that phages have developed a mechanism for horizontally acquiring genes to incorporate them at specific loci in the genome that help phage adaptation to the selective pressures imposed by the host.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1146) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed.

Results

We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103.

Conclusions

The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Anaplasma phagocytophilum is a zoonotic and obligate intracellular bacterium transmitted by ticks. In domestic ruminants, it is the causative agent of tick-borne fever, which causes significant economic losses in Europe. As A. phagocytophilum is difficult to isolate and cultivate, only nine genome sequences have been published to date, none of which originate from a bovine strain.Our goals were to; 1/ develop a sequencing methodology which efficiently circumvents the difficulties associated with A. phagocytophilum isolation and culture; 2/ describe the first genome of a bovine strain; and 3/ compare it with available genomes, in order to both explore key genomic features at the species level, and to identify candidate genes that could be specific to bovine strains.

Results

DNA was extracted from a bovine blood sample infected by A. phagocytophilum. Following a whole genome capture approach, A. phagocytophilum DNA was enriched 197-fold in the sample and then sequenced using Illumina technology. In total, 58.9% of obtained reads corresponded to the A. phagocytophilum genome, covering 85.3% of the HZ genome. Then by performing comparisons with nine previously-sequenced A. phagocytophilum genomes, we determined the core genome of these ten strains. Following analysis, 1281 coding DNA sequences, including 1001 complete sequences, were detected in the A. phagocytophilum bovine genome, of which four appeared to be unique to the bovine isolate. These four coding DNA sequences coded for "hypothetical proteins of unknown function” and require further analysis. We also identified nine proteins common to both European domestic ruminants tested.

Conclusion

Using a whole genome capture approach, we have sequenced the first A. phagocytophilum genome isolated from a cow. To the best of our knowledge, this is the first time that this method has been used to selectively enrich pathogenic bacterial DNA from samples also containing host DNA. The four proteins unique to the A. phagocytophilum bovine genome could be involved in host tropism, therefore their functions need to be explored.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-973) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

With the price of next generation sequencing steadily decreasing, bacterial genome assembly is now accessible to a wide range of researchers. It is therefore necessary to understand the best methods for generating a genome assembly, specifically, which combination of sequencing and bioinformatics strategies result in the most accurate assemblies. Here, we sequence three E. coli strains on the Illumina MiSeq, Life Technologies Ion Torrent PGM, and Pacific Biosciences RS. We then perform genome assemblies on all three datasets alone or in combination to determine the best methods for the assembly of bacterial genomes.

Results

Three E. coli strains – BL21(DE3), Bal225, and DH5α – were sequenced to a depth of 100× on the MiSeq and Ion Torrent machines and to at least 125× on the PacBio RS. Four assembly methods were examined and compared. The previously published BL21(DE3) genome [GenBank:AM946981.2], allowed us to evaluate the accuracy of each of the BL21(DE3) assemblies. BL21(DE3) PacBio-only assemblies resulted in a 90% reduction in contigs versus short read only assemblies, while N50 numbers increased by over 7-fold. Strikingly, the number of SNPs in PacBio-only assemblies were less than half that seen with short read assemblies (~20 SNPs vs. ~50 SNPs) and indels also saw dramatic reductions (~2 indel >5 bp in PacBio-only assemblies vs. ~12 for short-read only assemblies). Assemblies that used a mixture of PacBio and short read data generally fell in between these two extremes. Use of PacBio sequencing reads also allowed us to call covalent base modifications for the three strains. Each of the strains used here had a known covalent base modification genotype, which was confirmed by PacBio sequencing.

Conclusion

Using data generated solely from the Pacific Biosciences RS, we were able to generate the most complete and accurate de novo assemblies of E. coli strains. We found that the addition of other sequencing technology data offered no improvements over use of PacBio data alone. In addition, the sequencing data from the PacBio RS allowed for sensitive and specific calling of covalent base modifications.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-675) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Salmonella Typhimurium is frequently isolated from foodborne infection cases in Hong Kong, but the lack of genome sequences has hindered in-depth epidemiological and phylogenetic studies. In this study, we sought to reconstruct the phylogenetic relationship and investigate the distribution and mutation patterns of virulence determinants among local S. Typhimurium clinical isolates using their genome sequences.

Results

We obtained genome sequences of 20 S. Typhimurium clinical isolates from a local hospital cluster using a 454 GS FLX Titanium sequencing platform. Phylogenetic analysis was performed based on single nucleotide polymorphism positions of the core genome against the reference strain LT2. Antimicrobial susceptibility was determined using minimal inhibitory concentration for five antimicrobial agents and analyses of virulence determinants were performed through referencing to various databases. Through phylogenetic analysis, we revealed two distinct clades of S. Typhimurium isolates and three outliers in Hong Kong, which differ remarkably in antimicrobial susceptibility and presentation and mutations of virulence determinants. The local isolates were not closely related to many of the previously sequenced S. Typhimurium isolates, except LT2. As the isolates in the two clades spanned over 10 years of isolation, they probably represent endemic strains. The outliers are possibly introduced from outside of Hong Kong. The close relatedness of members in one of the clades to LT2 and the Japanese stool isolate T000240 suggests the potential reemergence of LT2 progeny in regions nearby.

Conclusions

Our study demonstrated the utility of next-generation sequencing coupled to traditional microbiological testing method in a retrospective epidemiological study involving multiple clinical isolates. The evolution of multidrug- and ciprofloxacin-resistant strains among the more virulent clade is also an increasing concern.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1900-y) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Brucellosis is an important zoonotic disease that affects both humans and animals. We sequenced the full genome and characterised the genetic diversity of two Brucella melitensis isolates from Malaysia and the Philippines. In addition, we performed a comparative whole-genome single nucleotide polymorphism (SNP) analysis of B. melitensis strains collected from around the world, to investigate the potential origin and the history of the global spread of B. melitensis.

Results

Single sequencing runs of each genome resulted in draft genome sequences of MY1483/09 and Phil1136/12, which covered 99.85% and 99.92% of the complete genome sequences, respectively. The B. melitensis genome sequences, and two B. abortus strains used as the outgroup strains, yielded a total of 13,728 SNP sites. Phylogenetic analysis using whole-genome SNPs and geographical distribution of the isolates revealed spatial clustering of the B. melitensis isolates into five genotypes, I, II, III, IV and V. The Mediterranean strains, identified as genotype I, occupied the basal node of the phylogenetic tree, suggesting that B. melitensis may have originated from the Mediterranean regions. All of the Asian B. melitensis strains clustered into genotype II with the SEA strains, including the two isolates sequenced in this study, forming a distinct clade denoted here as genotype IId. Genotypes III, IV and V of B. melitensis demonstrated a restricted geographical distribution, with genotype III representing the African lineage, genotype IV representing the European lineage and genotype V representing the American lineage.

Conclusion

We showed that SNPs retrieved from the B. melitensis draft full genomes were sufficient to resolve the interspecies relationships between B. melitensis strains and to discriminate between the vaccine and endemic strains. Phylogeographic reconstruction of the history of B. melitensis global spread at a finer scale by using whole-genome SNP analyses supported the origin of all B. melitensis strains from the Mediterranean region. The possible global distribution of B. melitensis following the ancient trade routes was also consistent with whole-genome SNP phylogeny. The whole genome SNP phylogenetics analysis, hence is a powerful tool for intraspecies discrimination of closely related species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1294-x) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Multipartite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice).

Results

We provide the first report of a multipartite mitochondrial genome architecture in a third order with highly rearranged genomes: Thysanoptera (thrips). We sequenced the complete mitochondrial genomes of two divergent members of the Scirtothrips dorsalis cryptic species complex. The East Asia 1 species has the single circular chromosome common to animals while the South Asia 1 species has a genome consisting of two circular chromosomes. The fragmented South Asia 1 genome exhibits extreme chromosome size asymmetry with the majority of genes on the large, 14.28 kb, chromosome and only nad6 and trnC on the 0.92 kb mini-circle chromosome. This genome also features paralogous control regions with high similarity suggesting a very recent origin of the nad6 mini-circle chromosome in the South Asia 1 cryptic species.

Conclusions

Thysanoptera, along with the other minor paraenopteran insect orders should be considered models for rapid mitochondrial genome evolution, including fragmentation. Continued use of these models will facilitate a greater understanding of recombination and other mitochondrial genome evolutionary processes across eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1672-4) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated.

Results

The complete genome of PsinSNPV was sequenced (Roche 454 GS FLX – Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins.

Conclusions

PsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1323-9) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Lactobacillus salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. Dissemination of antibiotic resistance genes among species with food or probiotic-association is undesirable and is often mediated by plasmids or integrative and conjugative elements. L. salivarius strains typically have multireplicon genomes including circular megaplasmids that encode strain-specific traits for intestinal survival and probiotic activity. Linear plasmids are less common in lactobacilli and show a very limited distribution in L. salivarius. Here we present experimental evidence that supports an unusually complex multireplicon genome structure in the porcine isolate L. salivarius JCM1046.

Results

JCM1046 harbours a 1.83 Mb chromosome, and four plasmids which constitute 20% of the genome. In addition to the known 219 kb repA-type megaplasmid pMP1046A, we identified and experimentally validated the topology of three additional replicons, the circular pMP1046B (129 kb), a linear plasmid pLMP1046 (101 kb) and pCTN1046 (33 kb) harbouring a conjugative transposon. pMP1046B harbours both plasmid-associated replication genes and paralogues of chromosomally encoded housekeeping and information-processing related genes, thus qualifying it as a putative chromid. pLMP1046 shares limited sequence homology or gene synteny with other L. salivarius plasmids, and its putative replication-associated protein is homologous to the RepA/E proteins found in the large circular megaplasmids of L. salivarius. Plasmid pCTN1046 harbours a single copy of an integrated conjugative transposon (Tn6224) which appears to be functionally intact and includes the tetracycline resistance gene tetM.

Conclusion

Experimental validation of sequence assemblies and plasmid topology resolved the complex genome architecture of L. salivarius JCM1046. A high-coverage draft genome sequence would not have elucidated the genome complexity in this strain. Given the expanding use of L. salivarius as a probiotic, it is important to determine the genotypic and phenotypic organization of L. salivarius strains. The identification of Tn6224-like elements in this species has implications for strain selection for probiotic applications.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-771) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections

Results

Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains.

Conclusions

The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes ‘on the fly’, and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1121) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Recent studies used the contact data or three-dimensional (3D) genome reconstructions from Hi-C (chromosome conformation capture with next-generation sequencing) to assess the co-localization of functional genomic annotations in the nucleus. These analyses dichotomized data point pairs belonging to a functional annotation as “close” or “far” based on some threshold and then tested for enrichment of “close” pairs. We propose an alternative approach that avoids dichotomization of the data and instead directly estimates the significance of distances within the 3D reconstruction.

Results

We applied this approach to 3D genome reconstructions for Plasmodium falciparum, the causative agent of malaria, and Saccharomyces cerevisiae and compared the results to previous approaches. We found significant 3D co-localization of centromeres, telomeres, virulence genes, and several sets of genes with developmentally regulated expression in P. falciparum; and significant 3D co-localization of centromeres and long terminal repeats in S. cerevisiae. Additionally, we tested the experimental observation that telomeres form three to seven clusters in P. falciparum and S. cerevisiae. Applying affinity propagation clustering to telomere coordinates in the 3D reconstructions yielded six telomere clusters for both organisms.

Conclusions

Distance-based assessment replicated key findings, while avoiding dichotomization of the data (which previously yielded threshold-sensitive results).

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-992) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Acholeplasma oculi belongs to the Acholeplasmataceae family, comprising the genera Acholeplasma and ‘Candidatus Phytoplasma’. Acholeplasmas are ubiquitous saprophytic bacteria. Several isolates are derived from plants or animals, whereas phytoplasmas are characterised as intracellular parasitic pathogens of plant phloem and depend on insect vectors for their spread. The complete genome sequences for eight strains of this family have been resolved so far, all of which were determined depending on clone-based sequencing.

Results

The A. oculi strain 19L chromosome was sequenced using two independent approaches. The first approach comprised sequencing by synthesis (Illumina) in combination with Sanger sequencing, while single molecule real time sequencing (PacBio) was used in the second. The genome was determined to be 1,587,120 bp in size. Sequencing by synthesis resulted in six large genome fragments, while the single molecule real time sequencing approach yielded one circular chromosome sequence. High-quality sequences were obtained by both strategies differing in six positions, which are interpreted as reliable variations present in the culture population. Our genome analysis revealed 1,471 protein-coding genes and highlighted the absence of the F1FO-type Na+ ATPase system and GroEL/ES chaperone. Comparison of the four available Acholeplasma sequences revealed a core-genome encoding 703 proteins and a pan-genome of 2,867 proteins.

Conclusions

The application of two state-of-the-art sequencing technologies highlights the potential of single molecule real time sequencing for complete genome determination. Comparative genome analyses revealed that the process of losing particular basic genetic features during genome reduction occurs in both genera, as indicated for several phytoplasma strains and at least A. oculi. The loss of the F1FO-type Na+ ATPase system may separate Acholeplasmataceae from other Mollicutes, while the loss of those genes encoding the chaperone GroEL/ES is not a rare exception in this bacterial class.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-931) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Problems associated with using draft genome assemblies are well documented and have become more pronounced with the use of short read data for de novo genome assembly. We set out to improve the draft genome assembly of the African cichlid fish, Metriaclima zebra, using a set of Pacific Biosciences SMRT sequencing reads corresponding to 16.5× coverage of the genome. Here we characterize the improvements that these long reads allowed us to make to the state-of-the-art draft genome previously assembled from short read data.

Results

Our new assembly closed 68 % of the existing gaps and added 90.6Mbp of new non-gap sequence to the existing draft assembly of M. zebra. Comparison of the new assembly to the sequence of several bacterial artificial chromosome clones confirmed the accuracy of the new assembly. The closure of sequence gaps revealed thousands of new exons, allowing significant improvement in gene models. We corrected one known misassembly, and identified and fixed other likely misassemblies. 63.5 Mbp (70 %) of the new sequence was classified as repetitive and the new sequence allowed for the assembly of many more transposable elements.

Conclusions

Our improvements to the M. zebra draft genome suggest that a reasonable investment in long reads could greatly improve many comparable vertebrate draft genome assemblies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1930-5) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Members of Comamonas testosteroni are environmental microorganisms that are usually found in polluted environment samples. They utilize steroids and aromatic compounds but rarely sugars, and show resistance to multiple heavy metals and multiple drugs. However, comprehensive genomic analysis among the C. testosteroni strains is lacked.

Results

To understand the genome bases of the features of C. testosteroni, we sequenced 10 strains of this species and analyzed them together with other related published genome sequences. The results revealed that: 1) the strains of C. testosteroni have genome sizes ranging from 5.1 to 6.0 Mb and G + C contents ranging from 61.1% to 61.8%. The pan-genome contained 10,165 gene families and the core genome contained 3,599 gene families. Heap’s law analysis indicated that the pan-genome of C. testosteroni may be open (α = 0.639); 2) by analyzing 31 phenotypes of 11 available C. testosteroni strains, 99.4% of the genotypes (putative genes) were found to be correlated to the phenotypes, indicating a high correlation between phenotypes and genotypes; 3) gene clusters for nitrate reduction, steroids degradation and metal and multi-drug resistance were found and were highly conserved among all the genomes of this species; 4) the genome similarity of C. testosteroni may be related to the geographical distances.

Conclusions

This work provided an overview on the genomes of C. testosteroni and new genome resources that would accelerate the further investigations of this species. Importantly, this work focused on the analysis of potential genetic determinants for the typical characters and found high correlation between the phenotypes and their corresponding genotypes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1314-x) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.

Background

Kutzneria is a representative of a rarely observed genus of the family Pseudonocardiaceae. Kutzneria species were initially placed in the Streptosporangiaceae genus and later reconsidered to be an independent genus of the Pseudonocardiaceae. Kutzneria albida is one of the eight known members of the genus. This strain is a unique producer of the glycosylated polyole macrolide aculeximycin which is active against both bacteria and fungi. Kutzneria albida genome sequencing and analysis allow a deeper understanding of evolution of this genus of Pseudonocardiaceae, provide new insight in the phylogeny of the genus, as well as decipher the hidden secondary metabolic potential of these rare actinobacteria.

Results

To explore the biosynthetic potential of Kutzneria albida to its full extent, the complete genome was sequenced. With a size of 9,874,926 bp, coding for 8,822 genes, it stands alongside other Pseudonocardiaceae with large circular genomes. Genome analysis revealed 46 gene clusters potentially encoding secondary metabolite biosynthesis pathways. Two large genomic islands were identified, containing regions most enriched with secondary metabolism gene clusters. Large parts of this secondary metabolism “clustome” are dedicated to siderophores production.

Conclusions

Kutzneria albida is the first species of the genus Kutzneria with a completely sequenced genome. Genome sequencing allowed identifying the gene cluster responsible for the biosynthesis of aculeximycin, one of the largest known oligosaccharide-macrolide antibiotics. Moreover, the genome revealed 45 additional putative secondary metabolite gene clusters, suggesting a huge biosynthetic potential, which makes Kutzneria albida a very rich source of natural products. Comparison of the Kutzneria albida genome to genomes of other actinobacteria clearly shows its close relations with Pseudonocardiaceae in line with the taxonomic position of the genus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-885) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号