首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A main goal of cattle genomics is to identify DNA differences that account for variations in economically important traits. In this study, we performed whole-genome analyses of three important cattle breeds in Korea—Hanwoo, Jeju Heugu, and Korean Holstein—using the Illumina HiSeq 2000 sequencing platform. We achieved 25.5-, 29.6-, and 29.5-fold coverage of the Hanwoo, Jeju Heugu, and Korean Holstein genomes, respectively, and identified a total of 10.4 million single nucleotide polymorphisms (SNPs), of which 54.12% were found to be novel. We also detected 1,063,267 insertions–deletions (InDels) across the genomes (78.92% novel). Annotations of the datasets identified a total of 31,503 nonsynonymous SNPs and 859 frameshift InDels that could affect phenotypic variations in traits of interest. Furthermore, genome-wide copy number variation regions (CNVRs) were detected by comparing the Hanwoo, Jeju Heugu, and previously published Chikso genomes against that of Korean Holstein. A total of 992, 284, and 1881 CNVRs, respectively, were detected throughout the genome. Moreover, 53, 65, 45, and 82 putative regions of homozygosity (ROH) were identified in Hanwoo, Jeju Heugu, Chikso, and Korean Holstein respectively. The results of this study provide a valuable foundation for further investigations to dissect the molecular mechanisms underlying variation in economically important traits in cattle and to develop genetic markers for use in cattle breeding.  相似文献   

2.
Korean Hanwoo cattle have been subjected to intensive artificial selection over the past four decades to improve meat production traits. Another three cattle varieties very closely related to Hanwoo reside in Korea (Jeju Black and Brindle) and in China (Yanbian). These breeds have not been part of a breeding scheme to improve production traits. Here, we compare the selected Hanwoo against these similar but presumed to be unselected populations to identify genomic regions that have been under recent selection pressure due to the breeding program. Rsb statistics were used to contrast the genomes of Hanwoo versus a pooled sample of the three unselected population (UN). We identified 37 significant SNPs (FDR corrected) in the HW/UN comparison and 21 known protein coding genes were within 1 MB to the identified SNPs. These genes were previously reported to affect traits important for meat production (14 genes), reproduction including mammary gland development (3 genes), coat color (2 genes), and genes affecting behavioral traits in a broader sense (2 genes). We subsequently sequenced (Illumina HiSeq 2000 platform) 10 individuals of the brown Hanwoo and the Chinese Yanbian to identify SNPs within the candidate genomic regions. Based on allele frequency differences, haplotype structures, and literature research, we singled out one non-synonymous SNP in the APP gene (APP: c.569C>T, Ala199Val) and predicted the mutational effect on the protein structure. We found that protein-protein interactions might be impaired due to increased exposed hydrophobic surfaces of the mutated protein. The APP gene has also been reported to affect meat tenderness in pigs and obesity in humans. Meat tenderness has been linked to intramuscular fat content, which is one of the main breeding goals for brown Hanwoo, potentially supporting a causal influence of the herein described nsSNP in the APP gene.  相似文献   

3.
Pigs have been one of the most important sources of meat for humans, and their productivity has been substantially improved by recent strong selection. Here, we present whole-genome resequencing analyses of 55 pigs of five breeds representing Korean native pigs, wild boar and three European origin breeds. 1,673.1 Gb of sequence reads were mapped to the Swine reference assembly, covering ∼99.2% of the reference genome, at an average of ∼11.7-fold coverage. We detected 20,123,573 single-nucleotide polymorphisms (SNPs), of which 25.5% were novel. We extracted 35,458 of non-synonymous SNPs in 9,904 genes, which may contribute to traits of interest. The whole SNP sets were further used to access the population structures of the breeds, using multiple methodologies, including phylogenetic, similarity matrix, and population structure analysis. They showed clear population clusters with respect to each breed. Furthermore, we scanned the whole genomes to identify signatures of selection throughout the genome. The result revealed several promising loci that might underlie economically important traits in pigs, such as the CLDN1 and TWIST1 genes. These discoveries provide useful genomic information for further study of the discrete genetic mechanisms associated with economically important traits in pigs.  相似文献   

4.
The Korean Hanwoo cattle have been intensively selected for production traits, especially high intramuscular fat content. It is believed that ancient crossings between different breeds contributed to forming the Hanwoo, but little is known about the genomic differences and similarities between other cattle breeds and the Hanwoo. In this work, cattle breeds were grouped by origin into four types and used for comparisons: the Europeans (represented by six breeds), zebu (Nelore), African taurine (N'Dama) and Hanwoo. All animals had genotypes for around 680 000 SNPs after quality control of genotypes. Average heterozygosity was lower in Nelore and N'Dama (0.22 and 0.21 respectively) than in Europeans (0.26–0.31, with Shorthorn as outlier at 0.24) and Hanwoo (0.29). Pairwise FST analyses demonstrated that Hanwoo are more related to European cattle than to Nelore, with N'Dama in an intermediate position. This finding was corroborated by principal components and unsupervised hierarchical clustering. Using genome‐wide smoothed FST, 55 genomic regions potentially under positive selection in Hanwoo were identified. Among these, 29 were regions also detected in previous studies. Twenty‐four regions were exclusive to Hanwoo, and a number of other regions were shared with one or two of the other groups. These regions overlap a number of genes that are related to immune, reproduction and fatty acid metabolism pathways. Further analyses are needed to better characterize the ancestry of the Hanwoo cattle and to define the genes responsible to the identified selection peaks.  相似文献   

5.

Background

Because the Japanese native cattle Kuchinoshima-Ushi have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed.

Results

In this study, we evaluated genetic features of this breed, including single nucleotide polymorphism (SNP) information, by whole-genome sequencing using a Genome Analyzer II. A total of 64.2 Gb of sequence was generated, of which 86% of the obtained reads were successfully mapped to the reference sequence (Btau 4.0) with BWA. On an average, 93% of the genome was covered by the reads and the number of mapped reads corresponded to 15.8-fold coverage across the covered region. From these data, we identified 6.3 million SNPs, of which more than 5.5 million (87%) were found to be new. Out of the SNPs annotated in the bovine sequence assembly, 20,432 were found in protein-coding regions containing 11,713 nonsynonymous SNPs in 4,643 genes. Furthermore, phylogenetic analysis using sequence data from 10 genes (more than 10 kbp) showed that Kuchinoshima-Ushi is clearly distinct from European domestic breeds of cattle.

Conclusions

These results provide a framework for further genetic studies in the Kuchinoshima-Ushi population and research on functions of SNP-containing genes, which would aid in understanding the molecular basis underlying phenotypic variation of economically important traits in cattle and in improving intrinsic defects in domestic cattle breeds.  相似文献   

6.
Since the completion of the bovine sequencing projects, a substantial number of genetic variations such as single nucleotide polymorphisms have become available across the cattle genome. Recently, cataloguing such genetic variations has been accelerated using massively parallel sequencing technology. However, most of the recent studies have been concentrated on European Bos taurus cattle breeds, resulting in a severe lack of knowledge for valuable native cattle genetic resources worldwide. Here, we present the first whole-genome sequencing results for an endangered Korean native cattle breed, Chikso, using the Illumina HiSeq 2,000 sequencing platform. The genome of a Chikso bull was sequenced to approximately 25.3-fold coverage with 98.8% of the bovine reference genome sequence (UMD 3.1) covered. In total, 5,874,026 single nucleotide polymorphisms and 551,363 insertion/deletions were identified across all 29 autosomes and the X-chromosome, of which 45% and 75% were previously unknown, respectively. Most of the variations (92.7% of single nucleotide polymorphisms and 92.9% of insertion/deletions) were located in intergenic and intron regions. A total of 16,273 single nucleotide polymorphisms causing missense mutations were detected in 7,111 genes throughout the genome, which could potentially contribute to variation in economically important traits in Chikso. This study provides a valuable resource for further investigations of the genetic mechanisms underlying traits of interest in cattle, and for the development of improved genomics-based breeding tools.  相似文献   

7.
Runs of homozygosity (ROH) are widely used as predictors of whole-genome inbreeding levels in cattle. They identify regions that have an unfavorable effect on a phenotype when homozygous, but also identify the genes associated with traits of economic interest present in these regions. Here, the distribution of ROH islands and enriched genes within these regions in four dairy cattle breeds were investigated. Cinisara (71), Modicana (72), Reggiana (168) and Italian Holstein (96) individuals were genotyped using the 50K v2 Illumina BeadChip. The genomic regions most commonly associated with ROHs were identified by selecting the top 1% of the single nucleotide polymorphisms (SNPs) most commonly observed in the ROH of each breed. In total, 11 genomic regions were identified in Cinisara and Italian Holstein, and eight in Modicana and Reggiana, indicating an increased ROH frequency level. Generally, ROH islands differed between breeds. The most homozygous region (>45% of individuals with ROH) was found in Modicana on chromosome 6 within a quantitative trail locus affecting milk fat and protein concentrations. We identified between 126 and 347 genes within ROH islands, which are involved in multiple signaling and signal transduction pathways in a wide variety of biological processes. The gene ontology enrichment provided information on possible molecular functions, biological processes and cellular components under selection related to milk production, reproduction, immune response and resistance/susceptibility to infection and diseases. Thus, scanning the genome for ROH could be an alternative strategy to detect genomic regions and genes related to important economic traits.  相似文献   

8.
Hanwoo and Chikso are classified as Korean native cattle breeds that are currently registered with the Food and Agriculture Organization. However, there is still a lack of genomic studies to compare Hanwoo to Chikso populations. The objective of this study was to perform genome-wide analysis of Hanwoo and Chikso populations, investigating the genetic relationships between these two populations. We genotyped a total of 319 cattle including 214 Hanwoo and 105 Chikso sampled from Gangwon Province Livestock Technology Research Institute, using the Illumina Bovine SNP50K Beadchip. After performing quality control on the initially generated datasets, we assessed linkage disequilibrium patterns for all the possible SNP pairs within 1 Mb apart. Overall, average r2 values in Hanwoo (0.048) were lower than Chikso (0.074) population. The genetic relationship between the populations was further assured by the principal component analysis, exhibiting clear clusters in each of the Hanwoo and Chikso populations, respectively. Overall heterozygosity for Hanwoo (0.359) was slightly higher than Chikso (0.345) and inbreeding coefficient was also a bit higher in Hanwoo (??0.015) than Chikso (??0.035). The average FST value was 0.036 between Hanwoo and Chikso, indicating little genetic differentiation between those two breeds. Furthermore, we found potential selection signatures including LRP1B and NTRK2 genes that might be implicated with meat and reproductive traits in cattle. In this study, the results showed that both Hanwoo and Chikso populations were not under severe level of inbreeding. Although the principal component analysis exhibited clear clusters in each of the populations, we did not see any clear evidence that those two populations are highly differentiated each other.  相似文献   

9.
The routine collection and use of genomic data are useful for effectively managing breeding programs for endangered populations. Linkage disequilibrium (LD) using high‐density DNA markers has been widely used to determine population structures and predict the genomic regions that are associated with economic traits in beef cattle. The extent of LD also provides information about historical events, including past effective population size (Ne), and it allows inferences on the genetic diversity of breeds. The objective of this study was to estimate the LD and Ne in three Korean cattle breeds that are genetically similar but have different coat colors (Brown, Brindle and Jeju Black Hanwoo). Brindle and Jeju Black are endangered breeds with small populations, whereas Brown Hanwoo is the main breeding population in Korea. DNA samples from these cattle breeds were genotyped using the Illumina BovineSNP50 Bead Chip. We examined 13 cattle breeds, including European taurines, African taurines and indicines, and hybrids to compare their LD values. Brown Hanwoo consistently had the lowest mean LD compared to Jeju Black, Brindle and the other 13 cattle breeds (0.13, 0.19, 0.21 and 0.15–0.22 respectively). The high LD values of Brindle and Jeju Black contributed to small Ne values (53 and 60 respectively), which were distinct from that of Brown Hanwoo (531) for 11 generations ago. The differences in LD and Ne for each breed reflect the breeding strategy applied. The Ne for these endangered cattle breeds remain low; thus, effort is needed to bring them back to a sustainable tract.  相似文献   

10.
In the present study, a sample of 88 animals belonging to four local (Modicana, Sarda, Sardo‐Bruna and Sardo‐Modicana) and one cosmopolitan (Italian Brown Swiss) cattle breeds were genotyped with a medium density SNP beadchip and compared to investigate their genetic diversity and the existence of selection signatures. A total of 43 012 SNPs distributed across all 29 autosomal chromosomes were retained after data quality control. Basic population statistics, Wright fixation index and runs of homozygosity (ROH) analyses confirmed that the Italian Brown Swiss genome was shaped mainly by selection, as underlined by the low values of heterozygosity and minor allele frequency. As expected, local cattle exhibited a large within‐breed genetic heterogeneity. The FST comparison revealing the largest number of significant SNPs was Sardo‐Bruna vs. Sardo‐Modicana, whereas the smallest was observed for Italian Brown Swiss vs. Sardo‐Modicana. Modicana exhibited the largest number of detected ROHs, whereas the smallest was observed for Sardo‐Modicana. Signatures of selection were detected in genomic regions that harbor genes involved in milk production traits for Italian Brown Swiss and fitness traits for local breeds. According to the results of multi‐dimensional scaling and the admixture analysis the Sardo‐Bruna is more similar to the Sarda than to the Italian Brown Swiss breed. Moreover, the Sardo‐Modicana is genetically closer to the Modicana than to the Sarda breed. Results of the present work confirm the usefulness of single nucleotide polymorphisms in deciphering the genetic architecture of livestock breeds.  相似文献   

11.
Hanwoo, Korean native cattle, is indigenous to the Korean peninsula. They have been used mainly as draft animals for about 5,000 years; however, in the last 30 years, their main role has been changed to meat production by selective breeding which has led to substantial increases in their productivity. Massively parallel sequencing technology has recently made possible the systematic identification of structural variations in cattle genomes. In particular, copy number variation (CNV) has been recognized as an important genetic variation complementary to single-nucleotide polymorphisms that can be used to account for variations of economically important traits in cattle. Here we report genome-wide copy number variation regions (CNVRs) in Hanwoo cattle obtained by comparing the whole genome sequence of Hanwoo with Black Angus and Holstein sequence datasets. We identified 1,173 and 963 putative CNVRs representing 16.7 and 7.8 Mbp from comparisons between Black Angus and Hanwoo and between Holstein and Hanwoo, respectively. The potential functional roles of the CNVRs were assessed by Gene Ontology enrichment analysis. The results showed that response to stimulus, immune system process, and cellular component organization were highly enriched in the genic-CNVRs that overlapped with annotated cattle genes. Of the 11 CNVRs that were selected for validation by quantitative real-time PCR, 9 exhibited the expected copy number differences. The results reported in this study show that genome-wide CNVs were detected successfully using massively parallel sequencing technology. The CNVs may be a valuable resource for further studies to correlate CNVs and economically important traits in cattle.  相似文献   

12.
Genomic selection has proven effective for advancing genetic gain for key profit traits in dairy cattle production systems. However, its impact to-date on genetic improvement programs for beef cattle has been less effective. Despite this, the technology is thought to be particularly useful for low heritability traits such as those associated with reproductive efficiency. The objective of this study was to identify genetic variants associated with key determinants of reproductive and overall productive efficiency in beef cows. The analysis employed a large dataset derived from the national genetic evaluation program in Ireland for two of the most predominant beef breeds, viz. Charolais (n = 5 244 cows) and Limousin (n = 7 304 cows). Single nucleotide polymorphisms (SNPs) were identified as being statistically significantly associated (adj. P < 0.05) with both reproductive and productive traits for both breed types. However, there was little across breed commonality, with only two SNPs (rs110240246 and rs110344317; adj. P < 0.05) located within the genomic regions of the LCORL and MSTN genes respectively, identified in both Charolais and Limousin populations, associated with traits including carcass weight, cull-cow weight and live-weight. Significant SNPs within the MSTN gene were also associated with both reproduction and production related traits within each breed. Finally, traits including calving difficulty, calf mortality and calving interval were associated with SNPs within genomic regions comprising genes involved in cellular growth and lipid metabolism. Genetic variants identified as associated with both important reproductive efficiency and production related traits from this study warrant further analyses for their potential incorporation into breeding programmes to support the sustainability of beef cattle production.  相似文献   

13.
Due to the phenotype-based artificial selection in domestic cattle, the underlying functional genes may be indirectly selected and show decreasing diversity in theory. The growth hormone receptor (GHR) gene has been widely proposed to significantly associate with critical economic traits in cattle. In the present study, we comparatively studied the genetic diversity of GHR in Tibetan cattle (a traditional unselected breed, n = 93) and Chinese Holstein cow (the intensively selected breed, n = 94). The Tibetan yak (n = 38) was also included as an outgroup breed. A total of 21 variants were detected by sequencing 1279 bp genomic fragments encompassing the largest exon 9. Twelve haplotypes (H1~H12) constructed by 15 coding SNPs were presented as a star-like network profile, in which haplotype H2 was located at the central position and almost occupied by Tibetan yaks. Furthermore, H2 was also identical to the formerly reported sequence specific to African cattle. Only haplotype H5 was simultaneously shared by all three breeds. Tibetan cattle showed higher nucleotide diversity (0.00215 ± 0.00015) and haplotype diversity (0.678 ± 0.026) than Holstein cow. Conclusively, we found Tibetan cattle have retained relatively high genetic variation of GHR. The predominant presence of African cattle specific H2 in the outgroup yak breed would highlight its ancestral relationship, which may be used as one informative molecular marker in the phylogenetic studies.  相似文献   

14.
This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate environment for use in the (sub)tropics. However, G × E interactions are unlikely to be of major importance in tropically adapted beef cattle grazed in either temperate or (sub)tropical environments, although sex × environment interactions may provide new opportunities for differentially selecting to simultaneously improve steer performance in benign environments and female performance in harsher environments. Early evidence suggests that re-ranking of SNPs occurs across temperate and tropical environments, although their magnitude is still to be confirmed in well-designed experiments. The major limitation to genetic improvement of beef cattle over the next decade is likely to be a deficiency of large numbers of accurately recorded phenotypes for most productive and adaptive traits and, in particular, for difficult-to-measure adaptive traits such as resistance to disease and environmental stressors.  相似文献   

15.

Background

Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs.

Results

Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes suggested that the PPAR pathway may have been subjected to positive selection.

Conclusions

This study provides a high-resolution bovine genomic map of positive selection signatures that are either specific to one breed or common to a subset of the seven breeds analyzed. Our results will contribute to the detection of functional candidate genes that have undergone positive selection in future studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0127-3) contains supplementary material, which is available to authorized users.  相似文献   

16.
Chianina and Maremmana breeds play an important role in the Italian cattle meat market. The Chianina breed is an ancient breed principally raised for draught. Now this breed is the worldwide recognized producer of top quality beef, tasteful and tender, specifically the famous “Florentine steak”. The Maremmana characterized by a massive skeletal structure, is a rustic cattle breed selected for adaptability to the marshy land of the Maremma region. We used a high throughput mRNA sequencing to analyze gene expression in muscle tissues of two Italian cattle breeds, Maremmana (MM) and Chianina (CN) with different selection history. We aim to examine the specific genetic contribution of each breed to meat production and quality, comparing the skeletal muscle tissue from Maremmana and Chianina. Most of the differentially expressed genes were grouped in the Glycolysis/Gluconeogenesis pathways. The rate and the extent of post-mortem energy metabolism have a critical effect on the conversion of muscle to meat. Furthermore, we aim at discovering the differences in nucleotide variation between the two breeds which might be attributable to the different history of selection/divergence. In this work we could emphasize the involvement of pathways of post-mortem energy metabolism. Moreover, we detected a collection of coding SNPs which could offer new genomic resources to improve phenotypic selection in livestock breeding program.  相似文献   

17.
Using PCR-SSCP and DNA sequencing technology, we examined the association of single nucleotide polymorphisms (SNPs) in the bovine MyoG gene with body measurement traits in 779 individuals of six native Chinese cattle breeds, namely Luxi, Luxi × Simmental crossbred, Nanyang, Xia'nan, Jiaxian red, and Qinchuan. A novel SNP, T314C, was detected. Allelic frequencies of MyoG-T/C in the six breeds were 0.8308/0.1692, 0.8774/0.1226, 0.8021/0.1979, 0.8209/0.1791, 0.8630/0.1370, 0.8044/0.1956, respectively. Least squares analysis revealed a significant (P < 0.05) association of the MyoG SNP with rump length in four breeds (Luxi, Xia'nan, Jiaxian red, and Qinchuan), with hucklebone width in three breeds (Luxi × Simmental crossbred, Nanyang and Xia'nan), with waist height in two breeds (Luxi × Simmental crossbred and Nanyang) and with body length in the Luxi breed. We conclude that the MyoG SNP has potential as a genetic marker for economically relevant body measurement traits in native Chinese cattle breeds.  相似文献   

18.
19.
Genetic (or ‘genomic’) imprinting, a feature of approximately 100 mammalian genes, results in monoallelic expression from one of the two parentally inherited chromosomes. To date, most studies have been directed on imprinted genes in murine or human models; however, there is burgeoning interest in the effects of imprinted genes in domestic livestock species. In particular, attention has focused on imprinted genes that influence foetal growth and development and that are associated with several economically important production traits in cattle, sheep and pigs. We have re-sequenced regions in 20 candidate bovine imprinted genes in order to validate single nucleotide polymorphisms (SNPs) that may influence important production traits in cattle. Putative SNPs detected via re-sequencing were subsequently re-formatted for high-throughput SNP genotyping in 185 cattle samples comprising 138 performance-tested European Bos taurus (all Limousin bulls), 29 African B. taurus and 18 Indian B. indicus samples. Analysis of the resulting genotypic data identified 117 validated SNPs. Preliminary genotype–phenotype association analyses using 83 SNPs that were polymorphic in the Limousin samples with minor allele frequencies ⩾0.05 revealed significant associations between two candidate bovine imprinted genes and a range of important beef production traits: average daily gain, average feed intake, live weight, feed conversion ratio, residual feed intake and residual gain. These genes were the Ras protein-specific guanine nucleotide releasing factor gene (RASGRF1) and the zinc finger, imprinted 2 gene (ZIM2). Despite the relatively small sample size used in these analyses, the observed associations with production traits are supported by the purported biological function of the RASGRF1 and ZIM2 gene products. These results support the hypothesis that imprinted genes contribute significantly to important complex production traits in cattle. Furthermore, these SNPs may be usefully incorporated into future marker-assisted and genomic selection breeding schemes.  相似文献   

20.
Pigmentation genes such as TYR (tyrosinase), TYRP1 (tyrosinase-related protein 1), DCT (previously TYRP2, or tyrosinase-related protein 2), ASIP (agouti) and MC1R (melanocortin receptor 1) play a major role in cattle coat colour. To understand the genotypic profile underlying coat colour in native Korean Hanwoo cattle and Angus black cattle, portions of the above-mentioned genes were amplified. Sequence analysis revealed variation in the TYRP1 (exon 5) and MC1R genes. Restriction enzyme analysis of these two genes could distinguish between different colours of Hanwoo cattle. Quantitative estimates of melanin and eumelanin in hair from three different-coloured Hanwoo phenotypes and Angus black showed significant differences at the breed and phenotypic levels. Finally, sequence variants in MC1R were associated with total melanin and eumelanin in breeds as well as in Hanwoo phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号