首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Personalized cancer treatment requires molecular characterization of individual tumor biopsies. These samples are frequently only available in limited quantities hampering genomic analysis. Several whole genome amplification (WGA) protocols have been developed with reported varying representation of genomic regions post amplification. In this study we investigate region dropout using a φ29 polymerase based WGA approach. DNA from 123 lung cancers specimens and corresponding normal tissue were used and evaluated by Sanger sequencing of the p53 exons 5-8. To enable comparative analysis of this scarce material, WGA samples were compared with unamplified material using a pooling strategy of the 123 samples. In addition, a more detailed analysis of exon 7 amplicons were performed followed by extensive cloning and Sanger sequencing. Interestingly, by comparing data from the pooled samples to the individually sequenced exon 7, we demonstrate that mutations are more easily recovered from WGA pools and this was also supported by simulations of different sequencing coverage. Overall this data indicate a limited random loss of genomic regions supporting the use of whole genome amplification for genomic analysis.  相似文献   

2.
Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance.  相似文献   

3.
BACKGROUND: Whole genome amplification (WGA) is usually needed in the genetic analysis of samples containing a low number of cells. In genome-wide analysis of DNA copy numbers by array comparative genomic hybridization (array-CGH) it is very important that the genome is evenly represented throughout the amplified product. All currently available WGA techniques are generating some degree of bias. METHODS: A way to compensate for this is using a reference sample which is similarly amplified, as the introduced amplification bias will be leveled out. Additionally, direct labeling of the amplified DNA is performed to bypass the currently widely applied random primed labeling, which involves an additional amplification of the product and is introducing extra bias. RESULTS: In this article it is shown that equal processing of the test and reference sample is indeed crucial to generate an optimal array-CGH profile of amplified DNA samples. Also presented here is that the labeling method may significantly effect the array-CGH result, it is shown that with direct chemical labeling using platinum derivates (ULS labeling) optimal array-CGH results are obtained. CONCLUSIONS: We show that an optimized WGA strategy for both test and reference sample in combination with direct chemical labeling results in a reliable array-CGH profile of samples as low as a 30 cell equivalent.  相似文献   

4.
Comparison of sample preparation methods for ChIP-chip assays   总被引:1,自引:0,他引:1  
A single chromatin immunoprecipitation (ChIP) sample does not provide enough DNA for hybridization to a genomic tiling array. A commonly used technique for amplifying the DNA obtained from ChIP assays is ligation-mediated PCR (LM-PCR). However; using this amplification method, we could not identify Oct4 binding sites on genomic tiling arrays representing 1% of the human genome (ENCODE arrays). In contrast, hybridization of a pool of 10 ChIP samples to the arrays produced reproducible binding patterns and low background signals. However the pooling method would greatly increase the number of ChIP reactions needed to analyze the entire human genome. Therefore, we have adapted the GenomePlex whole genome amplification (WGA) method for use in ChIP-chip assays; detailed ChIP and amplification protocols used for these analyses are provided as supplementary material. When applied to ENCODE arrays, the products prepared using this new method resulted in an Oct4 binding pattern similar to that from the pooled Oct4 ChIP samples. Importantly, the signal-to-noise ratio using the GenomePlex WGA method is superior to the LM-PCR amplification method.  相似文献   

5.
Single-cell sequencing is emerging as an important tool for studies of genomic heterogeneity. Whole genome amplification (WGA) is a key step in single-cell sequencing workflows and a multitude of methods have been introduced. Here, we compare three state-of-the-art methods on both bulk and single-cell samples of E. coli DNA: Multiple Displacement Amplification (MDA), Multiple Annealing and Looping Based Amplification Cycles (MALBAC), and the PicoPLEX single-cell WGA kit (NEB-WGA). We considered the effects of reaction gain on coverage uniformity, error rates and the level of background contamination. We compared the suitability of the different WGA methods for the detection of copy-number variations, for the detection of single-nucleotide polymorphisms and for de-novo genome assembly. No single method performed best across all criteria and significant differences in characteristics were observed; the choice of which amplifier to use will depend strongly on the details of the type of question being asked in any given experiment.  相似文献   

6.
Conservation and population genetic studies are sometimes hampered by insufficient quantities of high quality DNA. One potential way to overcome this problem is through the use of whole genome amplification (WGA) kits. We performed rolling circle WGA on DNA obtained from matched hair and tissue samples of North American red squirrels (Tamiasciurus hudsonicus). Following polymerase chain reaction (PCR) at four microsatellite loci, we compared genotyping success for DNA from different source tissues, both pre‐ and post‐WGA. Genotypes obtained with tissue were robust, whether or not DNA had been subjected to WGA. DNA extracted from hair produced results that were largely concordant with matched tissue samples, although amplification success was reduced and some allelic dropout was observed. WGA of hair samples resulted in a low genotyping success rate and an unacceptably high rate of allelic dropout and genotyping error. The problem was not rectified by conducting PCR of WGA hair samples in triplicate. Therefore, we conclude that WGA is only an effective method of enhancing template DNA quantity when the initial sample is from high‐yield material.  相似文献   

7.
Whole-genome amplification (WGA) methods were adopted for single-nucleotide-polymorphism (SNP) typing to minimize the amount of genomic DNA that has to be used in typing for thousands of different SNPs in large-scale studies; 5-10 ng of genomic DNA was amplified by a WGA method (improved primer-extension-preamplification-polymerase chain reaction (I-PEP-PCR), degenerated oligonucleotide primer-PCR (DOP-PCR), or multiple displacement amplification (MDA)). Using 1/100 to 1/500 amounts of the whole-genome-amplified products as templates, subsequent analyses were successfully performed. SNPs were genotyped by the sequence-specific primer (SSP)-PCR method followed by fluorescence correlation spectroscopy (FCS). The typing results were evaluated for four different SNPs on tumor necrosis factor receptor 1 and 2 genes (TNFR1 and TNFR2). The genotypes determined by the SSP-FCS method using the WGA products were 100% in concordance with those determined by nucleotide sequencing using genomic DNAs. We have already carried out typing of more than 300 different SNPs and are currently performing 7,500-10,000 typings per day using WGA samples from patients with several common diseases. WGA coupled with FCS allows specific and high-throughput genotyping of thousands of samples for thousands of different SNPs.  相似文献   

8.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.  相似文献   

9.
The whole genome amplification (WGA) protocol evaluated during this study, GenomiPhi DNA amplification kit, is a novel method that is not based on polymerase chain reaction but rather relies on the highly processive and high fidelity Phi29 DNA polymerase to replicate linear genomic DNA by multiple strand displacement amplification. As little as 1 ng of genomic DNA template is sufficient to produce microgram quantities of high molecular weight DNA. The question explored during this study is whether such a WGA method is appropriate to reliably replenish and even recover depleted DNA samples that can be used for downstream genetic analysis. A series of human DNA samples was tested in our laboratory and validated using such analytical methods as gene-specific polymerase chain reaction, direct sequencing, microsatellite marker analysis, and single nucleotide polymorphism allelic discrimination using TaqMan and Pyrosequencing chemistries. Although degraded genomic DNA is not a good template for Phi29 WGA, this method is a powerful tool to replenish depleted DNA stocks and to increase the amount of sample for which biological tissue availability is scarce. The testing performed during the validation phase of the study indicates no discernable difference between WGA samples and the original DNA templates. Thus, GenomiPhi WGA can be used to increase precious or depleted DNA stocks, thereby extending the life of a family-based linkage analysis project and increasing statistical power.  相似文献   

10.
Current microarray technology allows researchers to genotype a large number of SNPs with relatively small amounts of DNA. Nevertheless, researchers and clinicians still frequently face the problem of acquiring enough high-quality DNA for analysis. Whole-genome amplification (WGA) methods offer a solution for this problem, and earlier studies have shown that WGA samples perform reasonably well in small-scale genetic analyses (e.g. Affymetrix 10K array). To determine the performance of WGA products on a large-scale genotyping array, we compared the Affymetrix 250K array genotyping results of genomic DNA and their WGA products from four individuals. Our results indicate that WGA product performs well on the 250K array compared to genomic DNA, especially when using the BRLMM calling algorithm. WGA samples have high call rates (97.5% on average, compared to 99.4% for genomic DNA) and excellent concordance rates with their corresponding genomic DNA samples (98.7% on average). In addition, no apparent systematic genomic amplification bias can be detected. This study demonstrates that, although there is a slight decrease in the total call rates, WGA methods provide a reliable approach for increasing the amount of DNA samples for use with a common SNP genotyping array.  相似文献   

11.
Lee CI  Leong SH  Png AE  Choo KW  Syn C  Lim DT  Law HY  Kon OL 《Nature protocols》2006,1(5):2185-2194
We describe a protocol that uses a bioinformatically optimized primer in an isothermal whole genome amplification (WGA) reaction. Overnight incubation at 37 degrees C efficiently generates several hundred- to several thousand-fold increases in input DNA. The amplified product retains reasonably faithful quantitative representation of unamplified whole genomic DNA (gDNA). We provide protocols for applying this isothermal primer extension WGA protocol in three different techniques of genomic analysis: comparative genomic hybridization (CGH), genotyping at simple tandem repeat (STR) loci and screening for single base mutations in a common monogenic disorder, beta-thalassemia. gDNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues can also be amplified with this protocol.  相似文献   

12.
Consumption of contaminated drinking water is a significant cause of Campylobacter infections. Drinking water contamination is known to result from septic seepage and wastewater intrusion into non-disinfected sources of groundwater and occasionally from cross-connection into drinking water distribution systems. Wastewater effluents, farm animals and wild birds are the primary sources contributing human-infectious Campylobacters in environmental waters, impacting on recreational activities and drinking water sources. Culturing of Campylobacter entails time-consuming steps that often provide qualitative or semi-quantitative results. Viable but non-culturable forms due to environmental stress are not detected, and thus may result in false-negative assessments of Campylobacter risks from drinking and environmental waters. Molecular methods, especially quantitative PCR applications, are therefore important to use in the detection of environmental Campylobacter spp. Processing large volumes of water may be required to reach the desired sensitivity for either culture or molecular detection methods. In the future, applications of novel molecular techniques such as isothermal amplification and high-throughput sequencing applications are awaited to develop and become more affordable and practical in environmental Campylobacter research. The new technologies may change the knowledge on the prevalence and pathogenicity of the different Campylobacter species in the water environment.  相似文献   

13.
We examined the variations of bacterial populations in treated drinking water prior to and after the final chlorine disinfection step at two different surface water treatment plants. For this purpose, the bacterial communities present in treated water were sampled after granular activated carbon (GAC) filtration and chlorine disinfection from two drinking water treatment plants supplying the city of Paris (France). Samples were analyzed after genomic DNA extraction, polymerase chain reaction (PCR) amplification, cloning, and sequencing of a number of 16S ribosomal RNA (rRNA) genes. The 16S rDNA sequences were clustered into operational taxonomic units (OTUs) and the OTU abundance patterns were obtained for each sample. The observed differences suggest that the chlorine disinfection step markedly affects the bacterial community structure and composition present in GAC water. Members of the Alphaproteobacteria and Betaproteobacteria were found to be predominant in the GAC water samples after phylogenetic analyses of the OTUs. Following the chlorine disinfection step, numerous changes were observed, including decreased representation of Proteobacteria phylotypes. Our results indicate that the use of molecular methods to investigate changes in the abundance of certain bacterial groups following chlorine-based disinfection will aid in further understanding the bacterial ecology of drinking water treatment plants (DWTPs), particularly the disinfection step, as it constitutes the final barrier before drinking water distribution to the consumer’s tap.  相似文献   

14.
Ciliated protists contain both germline micronucleus (MIC) and somatic macronucleus (MAC) in a single cytoplasm. Programmed genome rearrangements occur in ciliates during sexual processes, and the extent of rearrangements varies dramatically among species, which lead to significant differences in genomic architectures. However, genomic sequences remain largely unknown for most ciliates due to the difficulty in culturing and in separating the germline from the somatic genome in a single cell. Single-cell whole genome amplification (WGA) has emerged as a powerful technology to characterize the genomic heterogeneity at the single-cell level. In this study, we compared two single-cell WGA, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in characterizing the germline and somatic genomes in ciliates with different genomic architectures. Our results showed that: 1) MALBAC exhibits strong amplification bias towards MAC genome while MDA shows bias towards MIC genome of ciliates with extensively fragmented MAC genome; 2) both MDA and MALBAC could amplify MAC genome more efficiently in ciliates with moderately fragmented MAC genome. Moreover, we found that more sample replicates could help to obtain more genomic data. Our work provides a reference for selecting the appropriate method to characterize germline and somatic genomes of ciliates.  相似文献   

15.

Background

Genome-wide profiling of single-nucleotide polymorphisms is receiving increasing attention as a method of pre-implantation genetic diagnosis in humans and of commercial genotyping of pre-transfer embryos in cattle. However, the very small quantity of genomic DNA in biopsy material from early embryos poses daunting technical challenges. A reliable whole-genome amplification (WGA) procedure would greatly facilitate the procedure.

Results

Several PCR-based and non-PCR based WGA technologies, namely multiple displacement amplification, quasi-random primed library synthesis followed by PCR, ligation-mediated PCR, and single-primer isothermal amplification were tested in combination with different DNA extractions protocols for various quantities of genomic DNA inputs. The efficiency of each method was evaluated by comparing the genotypes obtained from 15 cultured cells (representative of an embryonic biopsy) to unamplified reference gDNA. The gDNA input, gDNA extraction method and amplification technology were all found to be critical for successful genome-wide genotyping. The selected WGA platform was then tested on embryo biopsies (n = 226), comparing their results to that of biopsies collected after birth. Although WGA inevitably leads to a random loss of information and to the introduction of erroneous genotypes, following genomic imputation the resulting genetic index of both sources of DNA were highly correlated (r = 0.99, P<0.001).

Conclusion

It is possible to generate high-quality DNA in sufficient quantities for successful genome-wide genotyping starting from an early embryo biopsy. However, imputation from parental and population genotypes is a requirement for completing and correcting genotypic data. Judicious selection of the WGA platform, careful handling of the samples and genomic imputation together, make it possible to perform extremely reliable genomic evaluations for pre-transfer embryos.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-889) contains supplementary material, which is available to authorized users.  相似文献   

16.
Waterborne outbreaks associated with contamination of drinking water by Campylobacter jejuni are rather common in the Nordic countries Sweden, Norway, and Finland, where in sparsely populated districts groundwater is commonly used without disinfection. Campylobacters, Escherichia coli, or other coliforms have rarely been detected in potential sources. We studied three waterborne outbreaks in Finland caused by C. jejuni and used sample volumes of 4,000 to 20,000 ml for analysis of campylobacters and sample volumes of 1 to 5,000 ml for analysis of coliforms and E. coli, depending on the sampling site. Multiple samples obtained from possible sources (water distribution systems and environmental water sources) and the use of large sample volumes (several liters) increased the chance of detecting the pathogen C. jejuni in water. Filtration of a large volume (1,000 to 2,000 ml) also increased the rate of detection of coliforms and E. coli. To confirm the association between drinking water contamination and illness, a combination of Penner serotyping and pulsed-field gel electrophoresis (digestion with SmaI and KpnI) was found to be useful. This combination reliably verified similarity or dissimilarity of C. jejuni isolates from patient samples, from drinking water, and from other environmental sources, thus confirming the likely reservoir of an outbreak.  相似文献   

17.
Abstract

The present study aimed to evaluate the suitability for drinking purpose of shallow groundwater near the Béni-Mellal wastewater treatment lagoon based on various physicochemical, heavy metals, and bacteriological parameter analyses. The physicochemical results revealed that some of the samples do not comply with the Moroccan and/or WHO standards for drinking water. Parameters including turbidity, TH, Na+, Li+, Ba2+, Ca2+ (~47.1% of samples), Cd (~52.9% of samples), Fe (~82.4% of samples), Pb (~58.8% of samples), T. coliforms, and E. coli exceeded the drinking limits. The statistical analyses revealed that the shallow groundwater chemistry is mainly controlled by geogenic and anthropogenic sources. For quality assessment, using the Moroccan groundwater assessment grid, the values of EC and Cl, NO3, NH4+, oxidability, and E. coli, fixed as pollution indicators, showed that most of the wells showed medium-to-poor quality, 14% of them have a very poor water quality, and 20% of them belong to the bad water quality. According to geometric and arithmetic DWQI values, the groundwater quality was frequently fair to good, needing treatment or at least disinfection before public consumption. A sensitivity analysis results indicated that Fe, Cd, Cr, Pb, and E. coli have an important impact on the DWQI computing.  相似文献   

18.

Background

Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods.

Results

A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point.

Conclusions

Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.  相似文献   

19.
The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature.  相似文献   

20.
ABSTRACT

We have utilized the California GeoTracker database to evaluate field duplicate variability and the significance of sample contamination for groundwater and vapor samples collected from contaminated sites in California. Vapor duplicates are more variable than water duplicates with median percent difference in concentration of 25% compared to 7% for water samples. In addition, large differences in concentration were more common in vapor duplicates. For vapor analyte pairs, 20% of pairs had a percent difference in concentration of >300% while, for groundwater analyte pairs, only 3% had a percent difference of >300%. Contamination of samples during collection or analysis is also more significant for vapor samples. For water samples, sample contamination appears unlikely to result in false positive exceedances of drinking water standards; however, for vapor samples, sample contamination may result in false positive exceedances of indoor air screening values. For vapor samples, the use of reusable canisters and flow controllers is likely an important source of sample contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号