首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of vector control tools. We propose to develop a novel method for mosquito control that employs nanoparticles (NPs) as a platform for delivery of mosquitocidal dsRNA molecules to silence mosquito genes and cause vector lethality. Identifying optimal NP chemistry and morphology is imperative for efficient mosquitocide delivery. Toward this end, fluorescently labeled polyethylene glycol NPs of specific sizes, shapes (80 nm x 320 nm, 80 nm x 5000 nm, 200 nm x 200 nm, and 1000 nm x 1000 nm) and charges (negative and positive) were fabricated by Particle Replication in Non-Wetting Templates (PRINT) technology. Biodistribution, persistence, and toxicity of PRINT NPs were evaluated in vitro in mosquito cell culture and in vivo in Anopheles gambiae larvae following parenteral and oral challenge. Following parenteral challenge, the biodistribution of the positively and negatively charged NPs of each size and shape was similar; intense fluorescence was observed in thoracic and abdominal regions of the larval body. Positively charged NPs were more associated with the gastric caeca in the gastrointestinal tract. Negatively charged NPs persisted through metamorphosis and were observed in head, body and ovaries of adults. Following oral challenge, NPs were detected in the larval mid- and hindgut. Positively charged NPs were more efficiently internalized in vitro than negatively charged NPs. Positively charged NPs trafficked to the cytosol, but negatively charged NPs co-localized with lysosomes. Following in vitro and in vivo challenge, none of the NPs tested induced any cytotoxic effects.  相似文献   

2.
Yue ZG  Wei W  Lv PP  Yue H  Wang LY  Su ZG  Ma GH 《Biomacromolecules》2011,12(7):2440-2446
Chitosan-based nanoparticles (NPs) are widely used in drug delivery, device-based therapy, tissue engineering, and medical imaging. In this aspect, a clear understanding of how physicochemical properties of these NPs affect the cytological response is in high demand. The objective of this study is to evaluate the effect of surface charge on cellular uptake profiles (rate and amount) and intracellular trafficking. We fabricate three kinds of NPs (~ 215 nm) with different surface charge via SPG membrane emulsification technique and deposition method. They possess uniform size as well as identical other physicochemical properties, minimizing any differences between the NPs except for surface charge. Moreover, we extend our research to eight cell lines, which could help to obtain a representative conclusion. Results show that the cellular uptake rate and amount are both positively correlated with the surface charge in all cell line. Subsequent intracellular trafficking indicates that some of positively charged NPs could escape from lysosome after being internalized and exhibit perinuclear localization, whereas the negatively and neutrally charged NPs prefer to colocalize with lysosome. These results are critical in building the knowledge base required to design chitosan-based NPs to be used efficiently and specifically.  相似文献   

3.

Context

An increase in enzyme lactate dehydrogenase (LDH) in serum is a negative prognostic factor for survival in cats affected by lymphoma. Measuring LDH at the time of diagnosis has been studied for differentiating neoplastic disease from non-neoplastic disease in dogs. Inflammatory bowel disease (IBD) and alimentary lymphoma are common diseases in cats.

Objective

The aim of this study was to determine whether elevation of total LDH occurred in cats with alimentary lymphoma and non-neoplastic gastrointestinal disease, such as IBD, and to evaluate whether this enzyme is useful in supporting the differential diagnosis of these specific diseases.

Materials and Methods

A prospective non-randomized controlled study was carried-out in a real world setting of three Italian private veterinary clinics. Seventy-one client-owned cats with a history of chronic gastrointestinal symptoms were enrolled; 33 cats were histologically diagnosed as having alimentary lymphoma and 38 cats as having IBD. Serum samples of total LDH analysis were measured.

Results

Gender (P = 0.016) and age (P = 0.046) were found to be significant factors influencing the differentiation of serum total LDH between cats with alimentary lymphoma and those with IBD. Despite low diagnostic accuracy in the overall population (63%), a cut-off value of serum total LDH ranging from 0.85- to 1.04-times the upper reference limit showed good capability (accuracy >80%) of differentiating these two conditions in neutered males and cats younger than 8 years of age (AUC: 0.805, 0.833; sensitivities: 76.9%, 83.3%; specificities: 80.0%, 76.5%; PPV: 76.9%, 55.6%; NPV: 80.0%, 92.9%; respectively).

Conclusions

Although our study showed that gender and age are significant factors in differentiating serum total LDH between cats with alimentary lymphoma and those with IBD, this test had poor diagnostic accuracy in differentiating between these two conditions in the overall population.  相似文献   

4.
A Kumari  V Kumar  SK Yadav 《PloS one》2012,7(7):e41230

Background

Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin.

Methodology/Principal Findings

Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule.

Conclusions

This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other polymeric NPs of smaller size.  相似文献   

5.

Background

Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel.

Methodology/Principal Findings

We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm.

Conclusions/Significance

These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow.  相似文献   

6.
7.

Background

West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic.

Methodology/Principal Findings

We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase.

Conclusions/Significance

Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe.  相似文献   

8.

Background

Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices.

Methods and findings

We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA.

Conclusions

Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active enzymes on NPs as the basis for a highly rapid and sensitive biomarker detection platform. This addresses a key challenge in developing a PoCT platform for time sensitive and difficult to diagnose pathologies.  相似文献   

9.
Kinetics, biodistribution, and histological studies were performed to evaluate the particle‐size effects on the distribution of 15 nm and 50 nm PEG‐coated colloidal gold (CG) particles and 160 nm silica/gold nanoshells (NSs) in rats and rabbits. The above nanoparticles (NPs) were used as a model because of their importance for current biomedical applications such as photothermal therapy, optical coherence tomography, and resonance‐scattering imaging. The dynamics of NPs circulation in vivo was evaluated after intravenous administration of 15 nm CG NPs to rabbit, and the maximal concentrations of gold were observed 15–30 min after injection. Rats were injected in the tail vein with PEG‐coated NPs (about 0.3 mg Au/kg rats). 24 h after injection, the accumulation of gold in different organs and blood was determined by atomic absorption spectroscopy. In accordance with the published reports, we observed 15 nm particles in all organs with rather smooth distribution over liver, spleen and blood. By contrast, the larger NSs were accumulated mainly in the liver and spleen. For rabbits, the biodistribution was similar (72 h after intravenous injection). We report also preliminary data on the light microscopy and TEM histological examination that allows evaluation of the changes in biotissues after gold NPs treatment. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.

Background and Aim

Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement.

Methods

CACs were isolated from healthy donors’ buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml) to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression.

Results

Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs.

Conclusions

In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans.  相似文献   

11.

Background

New vector control paradigms expanding the use of spatial repellents are promising, but there are many gaps in our knowledge about how repellents work and how their long-term use might affect vector populations over time. Reported here are findings from a series of in vitro studies that investigated the plasticity and heritability of spatial repellent (SR) behaviors in Aedes aegypti exposed to airborne transfluthrin, including results that indicate a possible link between repellent insensitivity and insecticide resistance.

Methodology/principal findings

A dual-choice chamber system was used to observe directional flight behaviors in Aedes aegypti mosquitoes exposed to passively emanating transfluthrin vapors (1.35 mg/m3). Individual SR responder and SR non-responder mosquitoes were identified, collected and maintained separately according to their observed phenotype. Subsequent testing included re-evaluation of behavioral responses in some mosquito cohorts as well as testing the progeny of selectively bred responder and non-responder mosquito strains through nine generations. At baseline (F0 generation), transfluthrin actively repelled mosquitoes in the assay system. F0 mosquitoes repelled upon initial exposure to transfluthrin vapors were no more likely to be repelled again by subsequent exposure 24h later, but repelled mosquitoes allowed to rest for 48h were subsequently repelled at a higher proportion than was observed at baseline. Selective breeding of SR responders for nine generations did not change the proportion of mosquitoes repelled in any generation. However, selective breeding of SR non-responders did produce, after four generations, a strain of mosquitoes that was insensitive to the SR activity of transfluthrin. Compared to the SR responder strain, the SR insensitive strain also demonstrated decreased susceptibility to transfluthrin toxicity in CDC bottle bioassays and a higher frequency of the V1016Ikdr mutation.

Conclusions/significance

SR responses to volatile transfluthrin are complex behaviors with multiple determinants in Ae. aegypti. Results indicate a role for neurotoxic irritation of mosquitoes by sub-lethal doses of airborne chemical as a mechanism by which transfluthrin can produce SR behaviors in mosquitoes. Accordingly, how prolonged exposure to sub-lethal doses of volatile pyrethroids might impact insecticide resistance in natural vector populations, and how already resistant populations might respond to a given repellent in the field, are important considerations that warrant further monitoring and study. Results also highlight the critical need to develop new repellent active ingredients with novel mechanisms of action.  相似文献   

12.
13.

Background

The emerging submucosal tunneling and endoscopic resection (STER) technique provides definitive histological diagnosis as well as a therapeutic method for the gastric submucosal tumors (SMTs). We aim to present our experience and discuss key technical issues of STER.

Methods

45 patients with gastric SMTs arising from MP received STER. First, a mucosal incision was made 3cm proximal to the tumour, a submucosal tunnel was subsequently built from the incision to the tumor. The tumor was gradually exposed and dissected from surrounding tissue and retrieved from the tunnel. The initial mucosal incision was closed by metal clips. For SMTs in the gastric fundus near cardia, the submucosal tunnel was built from lower esophagus, through the angle of His, to the tumor for resection.

Results

STER was successfully performed in 43 patients; the other two were converted to surgery. Mean operating time was 79.3min (range 45–150min). Mean tumor size was 1.4cm (range 0.5–5cm). Of the total 47 resected SMTs, 36 were GISTs, 10 were leiomyomas and 1 was schwannoma. Complete resection was achieved in all patients. Intra-procedural peumoperitoneum occurred in 3 cases because of iatrogenic perforation, no special treatment was given. 7 patients presented with mild abdominal pain/distention and fever were given antibotics. No severe post-operative complication happened. No tumor recurrence occurred in the median 11 month follow-up period.

Conclusion

Based on short-term follow-up observation, STER is a feasible, safe and minimally invasive method for the diagnosis and treatment of small (<3cm) SMTs in gastric body, antrum and proximal cardia.  相似文献   

14.

Background

Efforts to stamp dengue in many dengue endemic countries has met little success. There is a need to re-examine and understand how the public at large view the dengue prevention efforts. This study aimed to examine the demographic factors, theoretical constructs of the Health Belief Model and knowledge about dengue and how these influence the practice of dengue prevention.

Methods

A national telephone survey was carried out with 2,512 individuals of the Malaysian public aged 18–60 years.

Results

The majority (73%) of the Malaysian public had a total dengue prevention score of 51–100 (of a possible score of 1–100). Multivariate analysis suggests significant correlates of higher dengue prevention practices with demographic background, perception of susceptibility to dengue, perceived density of mosquitoes in the neighbourhood and knowledge about dengue. Households of lower income of which the majority (40.7%) were from the rural areas, were associated with the highest odds [OR = 1.33; 95%CI = 1.09–1.67; p = 0.004] of dengue prevention. Dengue prevention practices were also less likely to be undertaken in neighbourhoods where the responders perceived there is no and/or low density of mosquitoes. Dengue prevention practices are also less likely to be practiced by skilled workers [OR = 0.78; 95%CI = 0.63–0.95; p = 0.029] compared to those unemployed. Higher perceived susceptibility to dengue was associated with higher dengue prevention practices and participants with higher dengue knowledge were found to have a higher level of involvement in dengue prevention practices.

Conclusion

Results from the study suggest that in formulating approaches to contain dengue, strategies should be developed to cultivate dengue prevention practices among urban population and target areas with low density of mosquitoes where public perceived a less likely chance of getting dengue. Dengue prevention campaigns should focus on messages highlighting the risk of contracting dengue and education to increase knowledge about dengue.  相似文献   

15.

Background

The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate.

Results

The macroscopic conductance of lysenin channels greatly diminished in the presence of cationic ZnO NPs. The inhibitory effects were asymmetrical relative to the direction of the electric field and addition site, suggesting electrostatic interactions between ZnO NPs and a binding site. Similar changes in the macroscopic conductance were observed when lysenin channels were reconstituted in neutral lipid membranes, implicating protein-NP interactions as the major contributor to the reduced transport capabilities. In contrast, no inhibitory effects were observed in the presence of anionic SnO2 NPs. Additionally, we demonstrate that inhibition of ion transport is not due to the dissolution of ZnO NPs and subsequent interactions of zinc ions with lysenin channels.

Conclusion

We conclude that electrostatic interactions between positively charged ZnO NPs and negative charges within the lysenin channels are responsible for the inhibitory effects on the transport of ions. These interactions point to a potential mechanism of cytotoxicity, which may not require NP internalization.
  相似文献   

16.

Background

Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.

Method

The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.

Results and Discussion

The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.

Conclusion

Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.  相似文献   

17.

Introduction

Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02).

Methods

The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model.

Results

Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks.

Conclusions

These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA.  相似文献   

18.
Water dispersible zinc sulfide quantum dots (ZnS QDs) with an average diameter of 2.9 nm were synthesized in an environment friendly method using chitosan as stabilizing agent. These nanocrystals displayed characteristic absorption and emission spectra having an absorbance edge at 300 nm and emission maxima (λ emission) at 427 nm. Citrate-capped silver nanoparticles (Ag NPs) of ca. 37-nm diameter were prepared by modified Turkevich process. The fluorescence of ZnS QDs was significantly quenched in presence of Ag NPs in a concentration-dependent manner with K sv value of 9 × 109 M−1. The quenching mechanism was analyzed using Stern–Volmer plot which indicated mixed nature of quenching. Static mechanism was evident from the formation of electrostatic complex between positively charged ZnS QDs and negatively charged Ag NPs as confirmed by absorbance study. Due to excellent overlap between ZnS QDs emission and surface plasmon resonance band of Ag NPs, the role of energy transfer process as an additional quenching mechanism was investigated by time-resolved fluorescence measurements. Time-correlated single-photon counting study demonstrated decrease in average lifetime of ZnS QDs fluorescence in presence of Ag NPs. The corresponding F?rster distance for the present QD–NP pair was calculated to be 18.4 nm.  相似文献   

19.

Background and Objective

Accumulating evidence has shown that low-power laser irradiation (LLI) affects cell proliferation and survival, but little is known about LLI effects on neural stem/progenitor cells (NSPCs). Here we investigate whether transcranial 532 nm LLI affects NSPCs in adult murine neocortex and in neurospheres from embryonic mice.

Study Design/Materials and Methods

We applied 532 nm LLI (Nd:YVO4, CW, 60 mW) on neocortical surface via cranium in adult mice and on cultured cells from embryonic mouse brains in vitro to investigate the proliferation and migration of NSPCs and Akt expression using immunohistochemical assays and Western blotting techniques.

Results

In vivo experiments demonstrated that 532 nm LLI significantly facilitated the migration of GABAergic NSPCs that were induced to proliferate in layer 1 by mild ischemia. In vitro experiments using GABAergic NSPCs derived from embryonic day 14 ganglionic eminence demonstrated that 532 nm LLI for 60 min promoted the migration of GAD67-immunopositive NSPCs with a significant increase of Akt expression. Meanwhile, the LLI induced proliferation, but not migration, of NSPCs that give rise to excitatory neurons.

Conclusion

It is concluded that 532 nm LLI promoted the migration of GABAergic NSPCs into deeper layers of the neocortex in vivo by elevating Akt expression.  相似文献   

20.

Scope

First- and second-generation antipsychotics (FGAs and SGAs, respectively), both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.

Methods

HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.

Results

Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.

Conclusion

Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids) accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号