首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ultrastructure of the mycetocytes and mycetome micro-organisms of the sweetpotato whitefly,Bemisia tabaci Genn. andTrialeurodes vaporariorum West are described. InB. tabaci, two morphologically distinct types of micro-organisms were observed in mycetocytes. The predominant type lacked a distinct cell wall, was pleomorphic in shape with a surrounding vacuole. The second type was a coccoid organism, with inner and outer cell membranes. The coccoid organism was often found in groups of varying number within vacuoles, and in many cases appeared to be undergoing degradation. InT. vaporariorum mycetocytes, pleomorphic and coccoid organisms were found, although the coccoid micro-organism inT. vaporariorum, had a thicker cell wall than the coccoid micro-organism inB. tabaci.Abbreviations C coccoid micro-organism - P pleomorphic micro-organism  相似文献   

2.
3.
Laboratory populations of the sweet potato whitefly, Bemisia tabaci, have been shown to consist of both migratory and trivial flying morphs. The behavior of these forms as part of the process of short-range migration was examined under field conditions. Insects were marked in a field of melons using fluorescent dust during two consecutive growing seasons. During the first growing season, passive traps used to collect living whiteflies, were placed along 16 equally spaced transects radiating from the field to a distance of up to 1.0 km. Wind out of the north-east consistently carried migrating whiteflies to traps placed along transects in the south-western quadrant because cold air drainages dictate wind direction during early morning hours in the desert South-west. For this reason, during the second season traps were laid out over fallow ground in a rectangular grid extending 2.7 km to the south-west of the marked field. If dispersal was entirely passive, patterns could be described using a diffusion model. Statistical examination of the data, howèver, demonstrated that the distribution on all days was patchy. Geostatistical techniques were used to describe the observed patchiness. Traps in the immediate vicinity of the marked field caught more whiteflies than the daily median. Large numbers were also collected from near the periphery of the grid. White-flies were far less prevalent in the grid's center. As a result, the distribution of captured whiteflies can be described as bimodal. These patterns confirm behavior observed in the laboratory, i.e., a portion of the population are trivial fliers that do not engage in migration and are consequently captured in traps near the field, and a portion initially respond to cues associated with skylight, ignoring cues provided by the ground, and fly for a period of time before landing in distant traps. During both years movement out of the field had an exaggerated directional component on 13 of 14 days.  相似文献   

4.
Some hemipteran xylem and phloem-feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber is likely facilitated by an aquaporin protein. B. tabaci aquaporin-1 (BtAQP1) possesses characteristic aquaporin topology and conserved pore-forming residues found in water-specific aquaporins. As predicted for an integral transmembrane protein, recombinant BtAQP1 expressed in cultured insect cells localized within the plasma membrane. BtAQP1 is primarily expressed in early instar nymphs and adults, where in adults it is localized in the filter chamber and hindgut. Xenopus oocytes expressing BtAQP1 were water permeable and mercury-sensitive, both characteristics of classical water-specific aquaporins. These data support the hypothesis that BtAQP1 is a water transport protein within the specialized filter chamber of the alimentary tract and functions to translocate water across tissues for maintenance of osmotic pressure and/or excretion of excess dietary fluid.  相似文献   

5.
In order to identify the whitefly molting hormone, whole body extracts of mature 4th instar and newly formed pharate adult Bemisia tabaci (Biotype B) and Trialeurodes vaporariorum were prepared and subjected to reverse phase high performance liquid chromatography (RPHPLC). Ecdysteroid content of fractions was determined by enzymeimmunoassay (EIA). The only detectable ecdysteroids that were present in significant amounts in whitefly extracts were ecdysone and 20-hydroxyecdysone. The concentrations of 20-hydroxyecdysone in B. tabaci and T. vaporariorum extracts, respectively, were 40 and 15 times greater than the concentrations of ecdysone. The identity of the two ecdysteroids was confirmed by normal phase high performance liquid chromatography (NPHPLC). When ecdysteroid content of RPHPLC fractions was assayed by radioimmunoassay (RIA), small amounts of polar ecdysteroids were also detected indicating that these ecdysteroids have a very low affinity for the antiserum used in the EIA. Ecdysteroid at 10.4 mM administered by feeding stimulated 2nd instar whitefly nymphs to molt. Based on our results, it appears that 20-hydroxyecdysone is the whitefly molting hormone.  相似文献   

6.
Abstract Endosymbionts are important components of arthropod biology. The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex composed of ≥ 28 putative species. In addition to the primary endosymbiont Portiera aleyrodidarum, six secondary endosymbionts (S‐endosymbionts), Hamiltonella, Rickettsia, Wolbachia, Cardinium, Arsenophonus and Fritschea, have been identified in B. tabaci thus far. Here, we tested five of the six S‐endosymbiont lineages (excluding Fritschea) from 340 whitely individuals representing six putative species from China. Hamiltonella was detected only in the two exotic invaders, Middle East‐Asia Minor 1 (MEAM1) and Mediterranean (MED). Rickettsia was absent in Asia II 1 and MED, scarce in Asia II 3 (13%), but abundant in Asia II 7 (63.2%), China 1 (84.7%) and MEAM1 (100%). Wolbachia, Cardinium and Arsenophonus were absent in the invasive MEAM1 and MED but mostly abundant in the native putative species. Furthermore, phylogenetic analyses revealed that some S‐endosymbionts have several clades and different B. tabaci putative species can harbor different clades of a given S‐endosymbiont, demonstrating further the complexity of S‐endosymbionts in B. tabaci. All together, our results demonstrate the variation and diversity of S‐endosymbionts in different putative species of B. tabaci, especially between invasive and native whiteflies.  相似文献   

7.
Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48–57) of arthropod species are infected with Wolbachia, 24% (CIs: 20–42) with Rickettsia and 13% (CIs: 13–55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification.  相似文献   

8.

Background

Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters.

Results

Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of these elements can help in the discovery and production of new compounds never identified under regular laboratory cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known.

Conclusions

Utilizing the rapidly developing sequencing technologies and software tools in combination with phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient, straightforward manner – an approach that will facilitate natural product discovery in the future.  相似文献   

9.
Terrestrial arthropods are often infected with heritable bacterial symbionts, which may themselves be infected by bacteriophages. However, what role, if any, bacteriophages play in the regulation and maintenance of insect–bacteria symbioses is largely unknown. Infection of the aphid Acyrthosiphon pisum by the bacterial symbiont Hamiltonella defensa confers protection against parasitoid wasps, but only when H. defensa is itself infected by the phage A. pisum secondary endosymbiont (APSE). Here, we use a controlled genetic background and correlation-based assays to show that loss of APSE is associated with up to sevenfold increases in the intra-aphid abundance of H. defensa. APSE loss is also associated with severe deleterious effects on aphid fitness: aphids infected with H. defensa lacking APSE have a significantly delayed onset of reproduction, lower weight at adulthood and half as many total offspring as aphids infected with phage-harbouring H. defensa, indicating that phage loss can rapidly lead to the breakdown of the defensive symbiosis. Our results overall indicate that bacteriophages play critical roles in both aphid defence and the maintenance of heritable symbiosis.  相似文献   

10.
The highly conserved 16S rRNA (rrs) gene is generally used for bacterial identification. In organisms possessing multiple copies of rrs, high intra-genomic heterogeneity does not allow easy distinction among different species. In order to identify Vibrio species, a wide range of genes have been employed. There is an urgent requirement of a consensus gene, which can be used as biomarker for rapid identification. Eight sequenced genomes of Vibrio species were screened for selecting genes which were common among all the genomes. Out of 108 common genes, 24 genes of sizes varying from 0.11 to 3.94 kb were subjected to in silico digestion with 10 type II restriction endonucleases (RE). A few unique genes—dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB in combination with certain REs provided unique digestion patterns, which can be used as biomarkers. This protocol can be exploited for rapid diagnosis of Vibrio species.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0553-5) contains supplementary material, which is available to authorized users.  相似文献   

11.
O Duron 《Heredity》2013,111(4):330-337
Various bacteria live exclusively within arthropod cells and collectively act as an important driver of arthropod evolutionary ecology. Whereas rampant intra-generic DNA transfers were recently shown to have a pivotal role in the evolution of the most common of these endosymbionts, Wolbachia, the present study show that inter-generic DNA transfers also commonly take place, constituting a potent source of rapid genomic change. Bioinformatic, molecular and phylogenetic data provide evidence that a selfish genetic element, the insertion sequence ISRpe1, is widespread in the Wolbachia, Cardinium and Rickettsia endosymbionts and experiences recent (and likely ongoing) transfers over long evolutionary distances. Although many ISRpe1 copies were clearly expanding and leading to rapid endosymbiont diversification, degraded copies are also frequently found, constituting an unusual genomic fossil record suggestive of ancient ISRpe1 expansions. Overall, the present data highlight how ecological connections within the arthropod intracellular environment facilitate lateral DNA transfers between distantly related bacterial lineages.  相似文献   

12.

Background

Actinobacteria of the genus Nocardia usually live in soil or water and play saprophytic roles, but they also opportunistically infect the respiratory system, skin, and other organs of humans and animals. Primarily because of the clinical importance of the strains, some Nocardia genomes have been sequenced, and genome sequences have accumulated. Genome sizes of Nocardia strains are similar to those of Streptomyces strains, the producers of most antibiotics. In the present work, we compared secondary metabolite biosynthesis gene clusters of type-I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) among genomes of representative Nocardia species/strains based on domain organization and amino acid sequence homology.

Results

Draft genome sequences of Nocardia asteroides NBRC 15531T, Nocardia otitidiscaviarum IFM 11049, Nocardia brasiliensis NBRC 14402T, and N. brasiliensis IFM 10847 were read and compared with published complete genome sequences of Nocardia farcinica IFM 10152, Nocardia cyriacigeorgica GUH-2, and N. brasiliensis HUJEG-1. Genome sizes are as follows: N. farcinica, 6.0 Mb; N. cyriacigeorgica, 6.2 Mb; N. asteroides, 7.0 Mb; N. otitidiscaviarum, 7.8 Mb; and N. brasiliensis, 8.9 - 9.4 Mb. Predicted numbers of PKS-I, NRPS, and PKS-I/NRPS hybrid clusters ranged between 4–11, 7–13, and 1–6, respectively, depending on strains, and tended to increase with increasing genome size. Domain and module structures of representative or unique clusters are discussed in the text.

Conclusion

We conclude the following: 1) genomes of Nocardia strains carry as many PKS-I and NRPS gene clusters as those of Streptomyces strains, 2) the number of PKS-I and NRPS gene clusters in Nocardia strains varies substantially depending on species, and N. brasiliensis strains carry the largest numbers of clusters among the species studied, 3) the seven Nocardia strains studied in the present work have seven common PKS-I and/or NRPS clusters, some of whose products are yet to be studied, and 4) different N. brasiliensis strains have some different gene clusters of PKS-I/NRPS, although the rest of the clusters are common within the N. brasiliensis strains. Genome sequencing suggested that Nocardia strains are highly promising resources in the search of novel secondary metabolites.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-323) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.

Background

Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins.

Results

After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG’s annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii’s metabolism in comparison to the one of S. cerevisiae (post-WGD – whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism.

Conclusions

This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii’s metabolism.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-810) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Intestinal microbes play significant roles in fish and can be possibly used as probiotics in aquaculture. In our previous study, Flaviramulus ichthyoenteri Th78T, a novel species in the family Flavobacteriaceae, was isolated from fish intestine and showed strong quorum quenching (QQ) ability. To identify the QQ enzymes in Th78T and explore the potential roles of Th78T in fish intestine, we sequenced the genome of Th78T and performed extensive genomic analysis.

Results

An N-acyl homoserine lactonase FiaL belonging to the metallo-β-lactamase superfamily was identified and the QQ activity of heterologously expressed FiaL was confirmed in vitro. FiaL has relatively little similarity to the known lactonases (25.2 ~ 27.9% identity in amino acid sequence). Various digestive enzymes including alginate lyases and lipases can be produced by Th78T, and enzymes essential for production of B vitamins such as biotin, riboflavin and folate are predicted. Genes encoding sialic acid lyases, sialidases, sulfatases and fucosidases, which contribute to utilization of mucus, are present in the genome. In addition, genes related to response to different stresses and gliding motility were also identified. Comparative genome analysis shows that Th78T has more specific genes involved in carbohydrate transport and metabolism compared to other two isolates in Flavobacteriaceae, both isolated from sediments.

Conclusions

The genome of Th78T exhibits evident advantages for this bacterium to survive in the fish intestine, including production of QQ enzyme, utilization of various nutrients available in the intestine as well as the ability to produce digestive enzymes and vitamins, which also provides an application prospect of Th78T to be used as a probiotic in aquaculture.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1275-0) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

The species Neorhizobium galegae comprises two symbiovars that induce nodules on Galega plants. Strains of both symbiovars, orientalis and officinalis, induce nodules on the same plant species, but fix nitrogen only in their own host species. The mechanism behind this strict host specificity is not yet known. In this study, genome sequences of representatives of the two symbiovars were produced, providing new material for studying properties of N. galegae, with a special interest in genomic differences that may play a role in host specificity.

Results

The genome sequences confirmed that the two representative strains are much alike at a whole-genome level. Analysis of orthologous genes showed that N. galegae has a higher number of orthologs shared with Rhizobium than with Agrobacterium. The symbiosis plasmid of strain HAMBI 1141 was shown to transfer by conjugation under optimal conditions. In addition, both sequenced strains have an acetyltransferase gene which was shown to modify the Nod factor on the residue adjacent to the non-reducing-terminal residue. The working hypothesis that this gene is of major importance in directing host specificity of N. galegae could not, however, be confirmed.

Conclusions

Strains of N. galegae have many genes differentiating them from strains of Agrobacterium, Rhizobium and Sinorhizobium. However, the mechanism behind their ecological difference is not evident. Although the final determinant for the strict host specificity of N. galegae remains to be identified, the gene responsible for the species-specific acetylation of the Nod factors was identified in this study. We propose the name noeT for this gene to reflect its role in symbiosis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-500) contains supplementary material, which is available to authorized users.  相似文献   

17.
Acinetobacter spp. are one of the most prevalent opportunistic pathogens causing nosocomial infections and have become a major clinical and public health threat. In this study, we presented the first draft genome sequence of A. soli TCM341, a multidrug resistant isolate that carried the bla NDM-1 gene in China. Genome sequencing of A. soli TCM341 was carried out in Illumina Hiseq 2000 next-generation sequencer. The data obtained revealed 74 contigs with genome size of 3.49 Mb and G+C content of 41.37 %.  相似文献   

18.
The Columbia root-knot nematode Meloidogyne chitwoodi parasitizes several plant species, including grasses that have been developed for semiarid environments, and substantially reduces the productivity of cereals and the longevity of perennial grasses growing under semiarid conditions throughout the intermountain region. Thirty-two auto- and allotetraploid (2n = 28) taxa in the perennial Triticeae were evaluated as possible sources of resistance to M. chitwoodi. Low levels of root galling were observed on roots of all accessions; root-gall indices ranged from 0 (no galls) to 1.95 in the grasses compared to 4.67 for the susceptible ''Ranger'' alfalfa check on a scale of 1 to 6. Even though the gall ratings were low, significant (P < 0.01) differences among accessions of the same species, among species, and among genera with different genomes were observed. Within the reproductive indices, which ranged from 0.01 to 1.20 in the grasses compared to 65.38 for the alfalfa check, there was no difference among genera with different genomes and accessions within the same species and genome; however, there was a significant (P < 0.05) difference among species with the same genomes. This variation can be traced to Thinopyrum nodosum (Jaaska-19), which was the only accession with a reproductive factor greater than 1.00. Based on the data, all auto- and allotetraploids are considered resistant to M. chitwoodi.  相似文献   

19.

Background

Mycobacterium abscessus complex, the third most frequent mycobacterial complex responsible for community- and health care-associated infections in developed countries, comprises of M. abscessus subsp. abscessus and M. abscessus subsp. bolletii reviously referred as Mycobacterium bolletii and Mycobacterium massiliense. The diversity of this group of opportunistic pathogens is poorly described.

Results

In-depth analysis of 14 published M. abscessus complex genomes found a pan-genome of 6,153 proteins and core-genome of 3,947 (64.1%) proteins, indicating a non-conservative genome. Analysing the average percentage of amino-acid sequence identity (from 94.19% to 98.58%) discriminates three main clusters C1, C2 and C3: C1 comprises strains belonging to M. abscessus, C2 comprises strains belonging to M. massiliense and C3 comprises strains belonging to M. bolletii; and two sub-clusters in clusters C2 and C3. The phylogenomic network confirms these three clusters. The genome length (from 4.8 to 5.51-Mb) varies from 5.07-Mb in C1, 4.89-Mb in C2A, 5.01-Mb in C2B and 5.28-Mb in C3. The mean number of prophage regions (from 0 to 7) is 2 in C1; 1.33 in C2A; 3.5 in C2B and five in C3. A total of 36 genes are uniquely present in C1, 15 in C2 and 15 in C3. These genes could be used for the detection and identification of organisms in each cluster. Further, the mean number of host-interaction factors (including PE, PPE, LpqH, MCE, Yrbe and type VII secretion system ESX3 and ESX4) varies from 70 in cluster C1, 80 in cluster C2A, 74 in cluster C2B and 93 in clusters C3A and C3B. No significant differences in antibiotic resistance genes were observed between clusters, in contrast to previously reported in-vitro patterns of drug resistance. They encode both penicillin-binding proteins targeted by β-lactam antibiotics and an Ambler class A β-lactamase for which inhibitors exist.

Conclusions

Our comparative analysis indicates that M. abscessus complex comprises three genomospecies, corresponding to M. abscessus, M. bolletii, and M. massiliense. The genomics data here reported indicate differences in virulence of medical interest; and suggest targets for the refined detection and identification of M. abscessus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-359) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background and Aims

The number of nodules formed on a legume root system is under the strict genetic control of the autoregulation of nodulation (AON) pathway. Plant hormones are thought to play a role in AON; however, the involvement of two hormones recently described as having a largely positive role in nodulation, strigolactones and brassinosteroids, has not been examined in the AON process.

Methods

A genetic approach was used to examine if strigolactones or brassinosteroids interact with the AON system in pea (Pisum sativum). Double mutants between shoot-acting (Psclv2, Psnark) and root-acting (Psrdn1) mutants of the AON pathway and strigolactone-deficient (Psccd8) or brassinosteroid-deficient (lk) mutants were generated and assessed for various aspects of nodulation. Strigolactone production by AON mutant roots was also investigated.

Key Results

Supernodulation of the roots was observed in both brassinosteroid- and strigolactone-deficient AON double-mutant plants. This is despite the fact that the shoots of these plants displayed classic strigolactone-deficient (increased shoot branching) or brassinosteroid-deficient (extreme dwarf) phenotypes. No consistent effect of disruption of the AON pathway on strigolactone production was found, but root-acting Psrdn1 mutants did produce significantly more strigolactones.

Conclusions

No evidence was found that strigolactones or brassinosteroids act downstream of the AON genes examined. While in pea the AON mutants are epistatic to brassinosteroid and strigolactone synthesis genes, we argue that these hormones are likely to act independently of the AON system, having a role in the promotion of nodule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号