首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frataxin is a conserved mitochondrial protein deficient in patients with Friedreich's ataxia. Frataxin has been implicated in control of iron homoeostasis and Fe-S cluster assembly. In yeast or human mitochondria, frataxin interacts with components of the Fe-S cluster synthesis machinery, including the cysteine desulfurase Nfs1, accessory protein Isd11 and scaffold protein Isu. In the present paper, we report that a single amino acid substitution (methionine to isoleucine) at position 107 in the mature form of Isu1 restored many deficient functions in Δyfh1 or frataxin-depleted yeast cells. Iron homoeostasis was improved such that soluble/usable mitochondrial iron was increased and accumulation of insoluble/non-usable iron within mitochondria was largely prevented. Cytochromes were returned to normal and haem synthesis was restored. In mitochondria carrying the mutant Isu1 and no frataxin, Fe-S cluster enzyme activities were improved. The efficiency of new Fe-S cluster synthesis in isolated mitochondria was markedly increased compared with frataxin-negative cells, although the response to added iron was minimal. The M107I substitution in the highly conserved Isu scaffold protein is typically found in bacterial orthologues, suggesting that a unique feature of the bacterial Fe-S cluster machinery may be involved. The mechanism by which the mutant Isu bypasses the absence of frataxin remains to be determined, but could be related to direct effects on Fe-S cluster assembly and/or indirect effects on mitochondrial iron availability.  相似文献   

2.
For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the “buried” substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.  相似文献   

3.
Friedreich ataxia is caused by decreased levels of frataxin, a mitochondrial acidic protein that is assumed to act as chaperone in the assembly of Fe-S clusters on the scaffold Isu protein. Frataxin has the in vitro capacity to form iron-loaded multimers, which also suggests an iron storage function. It has been reported that alanine substitution of residues in an acidic ridge of yeast frataxin (Yfh1) elicits loss of iron binding in vitro but has no effect on Fe-S cluster synthesis in vivo. Here, we show that a marked change in the electrostatic properties of a specific region of Yfh1 surface - by substituting two or four acidic residues by lysine or alanine, respectively - impairs Fe-S cluster assembly, weakens the interaction between Yfh1 and Isu1, and increases oxidative damage. Therefore, the acidic ridge is essential for the Yfh1 function and is likely to be involved in iron-mediated protein-protein interactions.  相似文献   

4.
Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A defect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN) stands out as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster biogenesis, and in humans, this is associated with Friedreich’s ataxia, a neurodegenerative disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, despite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular basis of the differing importance in the contribution of FXN remains enigmatic. Here, we have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viability strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile residue, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes. We found that in the double mutant IscUIM ΔcyaY, the ISC pathway was completely abolished, becoming equivalent to the ΔiscU deletion strain and recapitulating the drastic phenotype caused by FXN deletion in eukaryotes. Biochemical analyses of the “eukaryotic-like” IscUIM scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally, bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary scenario in which the current mitochondrial Isu proteins originated from the IscUIM version present in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S cluster biogenesis system, in bacteria, was accompanied by diminished contribution of CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the amino acid present at the 108th position of the scaffold.  相似文献   

5.
In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins.  相似文献   

6.
In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron–sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1–Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.  相似文献   

7.
Depletion of the mitochondrial matrix protein frataxin is the molecular cause of the neurodegenerative disease Friedreich ataxia. The function of frataxin is unclear, although recent studies have suggested a function of frataxin (yeast Yfh1) in iron/sulphur (Fe/S) protein biogenesis. Here, we show that Yfh1 specifically binds to the central Fe/S-cluster (ISC)-assembly complex, which is composed of the scaffold protein Isu1 and the cysteine desulphurase Nfs1. Association between Yfh1 and Isu1/Nfs1 was markedly increased by ferrous iron, but did not depend on ISCs on Isu1. Functional analyses in vivo showed an involvement of Yfh1 in de novo ISC synthesis on Isu1. Our data demonstrate a crucial function of Yfh1 in Fe/S protein biogenesis by defining its function in an early step of this essential process. The iron-dependent binding of Yfh1 to Isu1/Nfs1 suggests a role of frataxin/Yfh1 in iron loading of the Isu scaffold proteins.  相似文献   

8.
Friedreich ataxia is caused by reduced activity of frataxin, a conserved iron-binding protein of the mitochondrial matrix, thought to supply iron for formation of Fe-S clusters on the scaffold protein Isu. Frataxin binds Isu in an iron-dependent manner in vitro. However, the biological relevance of this interaction and whether in vivo the interaction between frataxin and Isu is mediated by adaptor proteins is a matter of debate. Here, we report that alterations of conserved, surface-exposed residues of yeast frataxin, which have deleterious effects on cell growth, impair Fe-S cluster biogenesis and interaction with Isu while altering neither iron binding nor oligomerization. Our results support the idea that the surface of the beta-sheet, adjacent to the acidic, iron binding ridge, is important for interaction of Yfh1 with the Fe-S cluster scaffold and point to a critical role for frataxin in Fe-S cluster biogenesis.  相似文献   

9.
Mitochondrial biosynthesis of iron-sulfur clusters (ISCs) is a vital process involving the delivery of elemental iron and sulfur to a scaffold protein via molecular interactions that are still poorly defined. Analysis of highly conserved components of the yeast ISC assembly machinery shows that the iron-chaperone, Yfh1, and the sulfur-donor complex, Nfs1-Isd11, directly bind to each other. This interaction is mediated by direct Yfh1-Isd11 contacts. Moreover, both Yfh1 and Nfs1-Isd11 can directly bind to the scaffold, Isu1. Binding of Yfh1 to Nfs1-Isd11 or Isu1 requires oligomerization of Yfh1 and can occur in an iron-independent manner. However, more stable contacts are formed when Yfh1 oligomerization is normally coupled with the binding and oxidation of Fe2+. Our observations challenge the view that iron delivery for ISC synthesis is mediated by Fe2+-loaded monomeric Yfh1. Rather, we find that the iron oxidation-driven oligomerization of Yfh1 promotes the assembly of stable multicomponent complexes in which the iron donor and the sulfur donor simultaneously interact with each other as well as with the scaffold. Moreover, the ability to store ferric iron enables oligomeric Yfh1 to adjust iron release depending on the presence of Isu1 and the availability of elemental sulfur and reducing equivalents. In contrast, the use of anaerobic conditions that prevent Yfh1 oligomerization results in inhibition of ISC assembly on Isu1. These findings suggest that iron-dependent oligomerization is a mechanism by which the iron donor promotes assembly of the core machinery for mitochondrial ISC synthesis.ISC3 biosynthesis is an essential function that eukaryotic cells initiate in mitochondria and probably other cellular compartments using three core components: a sulfur donor, an iron donor, and an ISC assembly scaffold (1, 2). In yeast mitochondria, the cysteine-desulfurase, Nfs1, and the iron-chaperone, Yfh1, are believed to provide sulfur and iron, respectively, for ISC assembly on the Isu1 scaffold (1), whereas the Nfs1-binding protein, Isd11, has been shown to stabilize Nfs1 (3). These components are highly conserved and the human orthologues of Yfh1 (frataxin), Isu1 (ISCU), and Isd11 (ISD11) are implicated in the etiology of severe disorders including Friedreich ataxia and mitochondrial myopathy (4).Previous studies have underscored the complexity of the interactions among eukaryotic ISC assembly components as well as their metal dependence. Supplementation of mitochondrial lysates with Fe2+ under aerobic conditions led to co-isolation of Yfh1 and Isu1 along with Nfs1 and Isd11 by pulldown or immunoprecipitation assays (57). Furthermore, aerobic preincubation of histidine-tagged Yfh1 monomer with Fe2+ enabled Isu1 to be pulled down by Yfh1 in the absence of other proteins (5). These studies have led to the current view that iron delivery for yeast ISC synthesis involves direct contacts between iron-loaded monomeric Yfh1 and Isu1 (57). Although Yfh1 oligomerization is normally coupled with iron binding, oxidation, and storage (5, 8), the possibility that Isu1 might also interact with oligomeric Yfh1 has remained largely unexplored.Similar to Yfh1, human frataxin was found to interact with multiple ISC assembly components in human cells; however, in this case immunoprecipitation data suggested that frataxin binds to ISCU indirectly, via nickel-dependent contacts with ISD11 (9). Whether direct interactions occur between Yfh1 and Isd11 has not yet been examined.While previous studies focused primarily on Yfh1-Isu1 and frataxin-ISD11 interactions, it is likely that the coordinate delivery of potentially toxic sulfur and iron to Isu1/ISCU involves multiple close interactions whereby the sulfur donor and the iron donor simultaneously interact with each other and with the ISC scaffold, as proposed for prokaryotic ISC assembly (10). However, it is currently unknown whether monomeric Yfh1/frataxin may form direct contacts with more than one partner, and the structure of the eukaryotic ISC assembly machinery is completely undefined. We show that iron oxidation-dependent oligomerization enables Yfh1 to have simultaneous direct interactions with Nfs1-Isd11 and Isu1. Our data provide insights about the sequence of events and the molecular architecture required for the initial step in mitochondrial ISC assembly.  相似文献   

10.
11.
Defects in frataxin result in Friedreich ataxia, a genetic disease characterized by early onset of neurodegeneration, cardiomyopathy, and diabetes. Frataxin is a conserved mitochondrial protein that controls iron needed for iron-sulfur cluster assembly and heme synthesis and also detoxifies excess iron. Studies in vitro have shown that either monomeric or oligomeric frataxin delivers iron to other proteins, whereas ferritin-like frataxin particles convert redox-active iron to an inert mineral. We have investigated how these different forms of frataxin are regulated in vivo. In Saccharomyces cerevisiae, only monomeric yeast frataxin (Yfh1) was detected in unstressed cells when mitochondrial iron uptake was maintained at a steady, low nanomolar level. Increments in mitochondrial iron uptake induced stepwise assembly of Yfh1 species ranging from trimer to > or = 24-mer, independent of interactions between Yfh1 and its major iron-binding partners, Isu1/Nfs1 or aconitase. The rate-limiting step in Yfh1 assembly was a structural transition that preceded conversion of monomer to trimer. This step was induced, independently or synergistically, by mitochondrial iron increments, overexpression of wild type Yfh1 monomer, mutations that stabilize Yfh1 trimer, or heat stress. Faster assembly kinetics correlated with reduced oxidative damage and higher levels of aconitase activity, respiratory capacity, and cell survival. However, deregulation of Yfh1 assembly resulted in Yfh1 aggregation, aconitase sequestration, and mitochondrial DNA depletion. The data suggest that Yfh1 assembly responds to dynamic changes in mitochondrial iron uptake or stress exposure in a highly controlled fashion and that this may enable frataxin to simultaneously promote respiratory function and stress tolerance.  相似文献   

12.
Friedreich ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in FeS cluster assembly in mitochondria. FeS clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multistep and multisubunit mitochondrial machinery that includes the scaffold protein Isu for assembling a protein-bound FeS cluster intermediate. Frataxin interacts with Isu, iron, and the cysteine desulfurase Nfs1, which supplies sulfide, thus placing it at the center of mitochondrial FeS cluster biosynthesis.  相似文献   

13.
Biogenesis of mitochondrial iron-sulfur (Fe/S) cluster proteins requires the interaction of multiple proteins with the highly conserved 14-kDa scaffold protein Isu, on which clusters are built prior to their transfer to recipient proteins. For example, the assembly process requires the cysteine desulfurase Nfs1, which serves as the sulfur donor for cluster assembly. The transfer process requires Jac1, a J-protein Hsp70 cochaperone. We recently identified three residues on the surface of Jac1 that form a hydrophobic patch critical for interaction with Isu. The results of molecular modeling of the Isu1-Jac1 interaction, which was guided by these experimental data and structural/biophysical information available for bacterial homologs, predicted the importance of three hydrophobic residues forming a patch on the surface of Isu1 for interaction with Jac1. Using Isu variants having alterations in residues that form the hydrophobic patch on the surface of Isu, this prediction was experimentally validated by in vitro binding assays. In addition, Nfs1 was found to require the same hydrophobic residues of Isu for binding, as does Jac1, suggesting that Jac1 and Nfs1 binding is mutually exclusive. In support of this conclusion, Jac1 and Nfs1 compete for binding to Isu. Evolutionary analysis revealed that residues involved in these interactions are conserved and that they are critical residues for the biogenesis of Fe/S cluster protein in vivo. We propose that competition between Jac1 and Nfs1 for Isu binding plays an important role in transitioning the Fe/S cluster biogenesis machinery from the cluster assembly step to the Hsp70-mediated transfer of the Fe/S cluster to recipient proteins.  相似文献   

14.
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.  相似文献   

15.
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-14C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-14C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.  相似文献   

16.
Frataxin, a mitochondrial protein that is directly involved in regulating cellular iron homeostasis, has been suggested to serve as an iron chaperone during cellular Fe-S cluster biosynthesis. In humans, decreased amounts or impaired function of frataxin causes the autosomal recessive neurodegenerative disorder Friedreich's ataxia. Cellular production of Fe-S clusters is accomplished by the Fe cofactor assembly platform enzymes Isu (eukaryotes) and IscU (prokaryotes). In this report, we have characterized the overall stability and iron binding properties of the Drosophila frataxin homologue (Dfh). Dfh is highly folded with secondary structural elements consistent with the structurally characterized frataxin orthologs. While the melting temperature ( T M approximately 59 degrees C) and chemical stability ([urea] 50% approximately 2.4 M) of Drosophila frataxin, measured using circular dichroism (CD) and fluorescence spectroscopy, closely match values determined for the human ortholog, pure Dfh is more stable against autodegradation than both the human and yeast proteins. The ferrous iron binding affinity ( K d approximately 6.0 microM) and optimal metal to protein stoichiometry (1:1) for Dfh have been measured using isothermal titration calorimetry (ITC). Under anaerobic conditions with salt present, holo-Dfh is a stable iron-loaded protein monomer. Frataxin prevents reactive oxygen species-induced oxidative damage to DNA when presented with both Fe(II) and H 2O 2. Ferrous iron bound to Dfh is high-spin and held in a partially symmetric Fe-(O/N) 6 coordination environment, as determined by X-ray absorption spectroscopy (XAS). Extended X-ray absorption fine structure (EXAFS) simulations indicate the average Fe-O/N bond length in Dfh is 2.13 A, consistent with a ligand geometry constructed by water and carboxylate oxygens most likely supplied in part by surface-exposed conserved acidic residues located on helix 1 and strand 1 in the structurally characterized frataxin orthologs. The iron-dependent binding affinity ( K d approximately 0.21 microM) and optimal holo-Dfh to Isu monomer stoichiometry (1:1) have also been determined using ITC. Finally, frataxin mediates the delivery of Fe(II) to Isu, promoting Fe-S cluster assembly in vitro. The Dfh-assisted assembly of Fe-S clusters occurs with an observed kinetic rate constant ( k obs) of 0.096 min (-1).  相似文献   

17.
18.
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease that has been linked to defects in the protein frataxin (Fxn). Most FRDA patients have a GAA expansion in the first intron of their Fxn gene that decreases protein expression. Some FRDA patients have a GAA expansion on one allele and a missense mutation on the other allele. Few functional details are known for the ~15 different missense mutations identified in FRDA patients. Here in vitro evidence is presented that indicates the FRDA I154F and W155R variants bind more weakly to the complex of Nfs1, Isd11, and Isu2 and thereby are defective in forming the four-component SDUF complex that constitutes the core of the Fe-S cluster assembly machine. The binding affinities follow the trend Fxn ~ I154F > W155F > W155A ~ W155R. The Fxn variants also have diminished ability to function as part of the SDUF complex to stimulate the cysteine desulfurase reaction and facilitate Fe-S cluster assembly. Four crystal structures, including the first for a FRDA variant, reveal specific rearrangements associated with the loss of function and lead to a model for Fxn-based activation of the Fe-S cluster assembly complex. Importantly, the weaker binding and lower activity for FRDA variants correlate with the severity of disease progression. Together, these results suggest that Fxn facilitates sulfur transfer from Nfs1 to Isu2 and that these in vitro assays are sensitive and appropriate for deciphering functional defects and mechanistic details for human Fe-S cluster biosynthesis.  相似文献   

19.
The mitochondrial proteins Isu1p and Isu2p play an essential role in the maturation of cellular iron-sulfur (Fe/S) proteins in eukaryotes. By radiolabelling of yeast cells with 55Fe we demonstrate that Isu1p binds an oxygen-resistant non-chelatable Fe/S cluster providing in vivo evidence for a scaffolding function of Isu1p during Fe/S cluster assembly. Depletion of the cysteine desulfurase Nfs1p, the ferredoxin Yah1p or the yeast frataxin homologue Yfh1p by regulated gene expression causes a strong decrease in the de novo synthesis of Fe/S clusters on Isu1p. In contrast, depletion of the Hsp70 chaperone Ssq1p, its co-chaperone Jac1p or the glutaredoxin Grx5p markedly increased the amount of Fe/S clusters bound to Isu1p, even though these mitochondrial proteins are crucial for maturation of Fe/S proteins. Hence Ssq1p/Jac1p and Grx5p are required in a step after Fe/S cluster synthesis on Isu1p, for instance in dissociation of preassembled Fe/S clusters from Isu1p and/or their insertion into apoproteins. We propose a model that dissects Fe/S cluster biogenesis into two major steps and assigns its central components to one of these two steps.  相似文献   

20.
Iron–sulfur (Fe–S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe–S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe–S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe–S cluster biogenesis does not meet cellular demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号