首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were immunized through an initial infection with 1,000 filariform larvae (L3) of Nippostrongylus brasiliensis and after complete expulsion of worms they were challenged with 1,000 L3 of Strongyloides venezuelensis to investigate whether cross-resistance developed against a heterologous parasite. Nippostrongylus brasiliensis-immunized rats developed a partial cross-resistance against S. venezuelensis migrating larvae (MSL3) in the lungs and adult worms in the small intestine. The population of MSL3 in the lungs were significantly lower (P < 0.05) in immunized rats (22.0 +/- 7.4) compared with controls (105.0 +/- 27.6). The populations of adult worms, egg output and fecundity were initially decreased but from day 14 post-challenge they did not show any significant difference between immunized and control rats. However, the length of worm in immunized rat was revealed as retardation. Peripheral blood eosinophilia was significantly decreased (P < 0.05) on day 7 post-challenge and then gradually increased, which peaked on day 42 post-challenge when most of the worms were expelled. These results suggest that peripheral blood eosinophilia is strongly involved in the worm establishment and expulsion mechanisms.  相似文献   

2.
An attempt has been made to study the extent and nature of the damage occurring in adult Nippostrongylus brasiliensis undergoing immune expulsion from the rat. It was found that worms are not killed nor irreparably damaged when being rejected. On transfer into naive second recipient rats the rate of re-establishment of worms previously incubated in immune rat recipients for 4-17 hr was high (68-69%) and comparable to that shown by worms from normal recipient rats (48-56%). Similarly, worms taken on days 10, 11, and 12 of a primary infection, already passed to the distal half of the small intestine due to immune expulsion effects, on transfer into naive recipient rats re-established themselves well (rates varying from 62 to 80%) compared to those harvested from their normal habitat in the proximal half of the small intestine (rates varying from 44 to 87%). Worm damage is associated with decreased motility and impaired locomotion capacity. The phenomenon of mucosal trapping occurs during expulsion, but merely to the extent of some 30% of the worm population. It is suggested that in principle, worms subjected to immune expulsion are in a state of acute, transient metabolic crisis. The present results support the enteroallergic indirect mechanism for worm rejection.  相似文献   

3.
PGE1 and PGE2 have been reported to enhance natural expulsion of Nippostrongylus brasiliensis, a nematode parasite, from the intestine of the rat. Mucus production may also be a key element of worm rejection. Our study attempts to determine if 1) PGE1 or PGE2 alter the normal course of infection with N. brasiliensis in rats, 2) a known mucous enhancing drug, acetazolamide, can augment the rate of worm expulsion, and 3) combinations of prostaglandins and acetazolamide affect N. brasiliensis in the rat. Rats were inoculated with approximately 1,000 infective larvae of N. brasiliensis. Animals were administered, intraduodenally, one of the following: 0.2 ml 0.9% NaCl; 0.2 ml 100% ethanol; 250 micrograms PGE1/0.2 ml 100% ethanol; 250 micrograms PGE2/0.2 ml 100% ethanol; 250 micrograms acetazolamide/0.2 ml 100% ethanol; 250 micrograms PGE1 or PGE2 + 250 micrograms acetazolamide/0.2 ml 100% ethanol. These solutions were given in a single bolus on day 6 postinoculation (PI) or twice daily on days 6-9 PI. Following these treatments the number of parasite ova per gram feces per day for days 6-10 PI and numbers of worms present at necropsy on day 10 PI were determined. Treatment with prostaglandins or acetazolamide or both failed to adversely affect egg deposition by adult female worms or the number of worms in the small intestine. These results do not support the involvement of prostaglandins in the expulsion of N. brasiliensis from the host intestine.  相似文献   

4.
Adult Strongyloides ratti were expelled from the small intestine of rats starting 14-18 days after a primary infection. In a secondary infection very few adult worms developed and most of these were expelled before day 14. At the time of expulsion the worms migrated posteriorly in the intestine and their size decreased.  相似文献   

5.
When adult Nippostrongylus brasiliensis were maintained in vitro they became damaged. Using the criteria of ultrastructural morphology, acetylcholinesterase isoenzyme pattern and the behaviour of the worms after transfer to a normal rat, this damage appeared to be similar to that produced by the in vivo action of antibodies. Antibodies were shown to be responsible for the anterior migration of adult worms which occurs during primary infections in mature rats and in the prolonged infections seen in lactating and immature rats. Antibody damaged worms and worms unaffected by antibodies were equally able to stimulate the immune response required for worm expulsion. Apparently antibody damage is not required for the initiation of the second immune component necessary for expulsion of this parasite.  相似文献   

6.
Previous experiments have shown that a primary infection with 100000 infective larvae of the trichostrongylid Cooperia oncophora allows discrimination between different type of responder animals based on the speed by which the parasite is expelled from the host. In most of the animals (intermediate responders) the expulsion occurs 35-42 days after infection. This experiment was carried out to investigate which mechanisms contribute to the clearance of the parasite from the intestine. Sequential necropsy of the animals 14, 28 and 42 days after infection together with a segmental division of the small intestine, allowed us to characterise essential components associated with development of immunity and expulsion of the parasite from its niche. The results show that during the patent phase of the infection the parasite preferentially resides in the proximal gut. Forty-two days after infection ongoing expulsion is characterised by a migration of the worms to the more distal part of the intestine. Expulsion of the adult worm population appears to be mast-cell independent and is associated with a significant increase in parasite-specific mucous IgA and IgG1 as well as with an influx of eosinophils in the intestinal lamina propria. Although we did not observe a specific lymphocyte recruitment into the intestinal mucosa, the accumulation of eosinophils seems to be mediated by CD4+ cells. We measured significant negative correlations between the number of eosinophils and the expulsion rate of the parasite expressed by sex ratio and ratio eggs per gram faeces. Parasite-specific mucosal IgA levels were negatively correlated to the fecundity of the worms, expressed as number of eggs per female worm. Our results describe the involvement of both eosinophils and mucosal IgA in the regulation of C. oncophora expulsion and suggest the development of a Th2 effector immune response.  相似文献   

7.
The capacity of different phases of the life cycle of Trichinella spiralis to induce rapid expulsion was examined. The phases examined included enteral preadults, enteral adults, and parenteral larvae. All had the ability to induce rapid expulsion although there were significant quantitative differences in their inductive capacity and in the kinetics of expression. Immunization with preadults required only a 48-hr enteral exposure to 2000 worms to induce strong rapid expulsion. In contrast rats required a 14-day exposure to adult worms to elicit a comparable response. After immunization with adults the reaction was demonstrable for only 2 weeks. Parenteral larvae produced only a weak rapid expulsion reaction by themselves and this response did not develop until some 8 weeks after challenge. When immunization with the enteral phases (preadult and adult) was combined with exposure to parenteral larvae a strong and enduring rapid expulsion reaction was observed. Phase specificity was also observed in the susceptibility of worms to the rapid expulsion response. The preadult phases, from infectious larvae to worms of up to 2 days of age were highly susceptible. Older worms, from 3 to 4 days old were not susceptible to rapid expulsion and could invade and establish themselves in the primed intestine for at least a 48-hr period without apparent adverse effects.  相似文献   

8.
Eosinophils were examined for the capacity of attacking Strongyloides venezuelensis adult worms in the intestinal mucosa by using interleukin (IL)-5 transgenic mice. In IL-5 transgenic mice, most of the subcutaneously inoculated infective larvae were killed during migration, and only a few worms could reach the small intestine. When the same number of adult worms were surgically implanted in the small intestine of IL-5 transgenic and control mice, fecal egg output as well as the number of adult worms recovered from the intestine was significantly lower in IL-5 transgenic mice. In the intestinal mucosa of IL-5 transgenic mice, large number of eosinophils was present in the lamina propria even before adult worm implantation. The number of eosinophils increased significantly as early as 24 h after implantation and tripled by day 3, whereas mucosal eosinophilia remained low in wild-type mice. Most notably, eosinophils infiltrated into the intestinal epithelium and surrounded adult worms in IL-5 transgenic mice, which was never seen in wild-type control mice. However, IL-5 transgenic mice required the same period as normal mice to completely expel implanted adult worms. The amount of specific IgA as well as total IgA in the stool was high in IL-5 transgenic mice before adult worm implantation, and dropped rapidly after adult worm implantation. The present study suggests that eosinophils are capable of attacking adult nematodes in the intestinal epithelia, probably in conjunction with secretory IgA, although they are not enough for the complete worm expulsion.  相似文献   

9.
Mast cell kinetics during infection with the nematode Nippostrongylus brasiliensis were studied at various sites in the small bowel of rats and in heterotopically transplanted isografts of foetal small intestine placed under the kidney capsule. Infection produced an increase in the number of mast cells not only in the proximal jejunum, where most of the worms are located, but also in the distal ileum and in isografts of small intestine. However, globule leucocyte infiltration of the gut epithelium was confined to the proximal small intestine and did not occur in the distal ileum or isografts. These results show that the mast cell increase in the small bowel of N. brasiliensis-infected rats is a property of the whole organ, and is not restricted to sites of worm infection; but that in contrast, globule leucocyte infiltration of the epithelium is dependent upon the presence of worms within the bowel lumen.  相似文献   

10.
Potential sites for expression of acquired resistance to Strongyloides ratti larvae in rats were investigated. In rats immunized by exposure to a single live infection and challenged 30 to 40 days later, 46 to 98% of the challenge larvae failed to reach the small intestine. Multiply immunized rats nearly completely eliminated migrating challenge larvae. This early killing of migrating larvae occurred during the first 48 hr after challenge infection. Resistance to migrating challenge larvae was also induced by repeated injections with heat-killed infective larvae. That the intestine may also serve as an effective site for worm expulsion was confirmed by intestinal transfers of worms from rats with primary infections into resistant rats.  相似文献   

11.
12.
Echinostomes are intestinal trematodes that infect a wide range of vertebrate hosts, including humans, in their adult stage and also parasitize numerous invertebrate and cold-blooded vertebrate hosts in their larval stages. The purpose of this study was to compare Echinostoma malayanum parasite growth, including worm recovery, body size of adult worms, eggs per worm, eggs per gram of feces, and pathological changes in the small intestine of experimental animals. In this study, 6-8-week-old male hamsters, rats, mice, and gerbils were infected with echinostome metacercariae and then sacrificed at day 60 post-infection. The small intestine and feces of each infected animal were collected and then processed for analysis. The results showed that worm recovery, eggs per worm, and eggs per gram of feces from all infected hamsters were higher compared with infected rats and mice. However, in infected gerbils, no parasites were observed in the small intestine, and there were no parasite eggs in the feces. The volume of eggs per gram of feces and eggs per worm were related to parasite size. The results of histopathological changes in the small intestine of infected groups showed abnormal villi and goblet cells, as evidenced by short villi and an increase in the number and size of goblet cells compared with the normal control group.  相似文献   

13.
Infection of rats with 2000 infective juveniles of Nippostrongylus brasiliensis and of lambs with 60 000 infective juveniles of Nematodirus battus results in a well-marked immunity to these nematodes in their respective host. There is a fall in the adenylate energy charge value of these nematodes during the course of these infections, reaching values of 0.37 in males and 0.27 in females of N. brasiliensis, and 0.31 in males and 0.23 in females of N. battus towards the end of the infections. In hosts given relatively small numbers of infective juveniles, the values for the nematodes removed from the hosts late in the infection remain at a relatively high level. These results indicate that the immune response of the host may affect the energy status of these nematodes, and this could help to explain their subsequent expulsion from the immune host.  相似文献   

14.
Kinetics of intestinal mast cells and goblet cells were examined in relation to worm localization at various sites in the small intestine of rats infected with 3000 filariform (stage 3) larvae of Strongyloides ratti. The most marked intestinal mastocytosis was observed on Day 20 at the anterior site of the small intestine where the majority of the worms had concentrated. The number of mast cells in the posterior small intestine increased in parallel with the posterior shift of parasites at the later stage of the infection. In contrast to the intestinal mast cell response, the number of goblet cells was not significantly affected by the infection. These results strongly suggest that intestinal mastocytosis is closely related to the presence of the worms and that mast cells may play an important role for the expulsion of S. ratti.  相似文献   

15.
Glucose absorption and net small intestinal water movement were examined in rats infected with Nippostrongylus brasiliensis at Days 4, 6, 9, 13, and 19 after inoculation. Rats were infected with 4 X 10(3) N. brasiliensis third stage larvae. The entire small intestine was divided into three segments and each segment perfused simultaneously in vivo with Krebs-Ringer phosphate buffer containing 80 mM glucose, 6 X 10(5) dpm/ml [3H]glucose, and 6.2 X 10(3) dpm/ml [14C]polyethylene glycol. Rats perfused on Days 6, 9, 13, and 19 after inoculation showed a significant (P less than 0.05) decrease in glucose absorption rates from all three segments of the small intestine when compared to uninfected controls. In the three segments of uninfected rat small intestine and those perfused on Days 4, 13, and 19 after inoculation, net absorption of water occurred. However, in the proximal and distal segments perfused on Day 6 and the proximal segment perfused on Day 9, net water movement into the lumen occurred. This is the first report of depressed glucose absorption along the entire length of the small intestine during nippostrongylosis and contradicts previous reports of unaltered net glucose absorption in response to this parasite.  相似文献   

16.
Immunity to intestinal parasites: role of mast cells and goblet cells   总被引:1,自引:0,他引:1  
Nippostrongylus brasiliensis infection of rats and mice is a model for studying immunity at mucosal surfaces. Adult worms are spontaneously expelled from the intestine at the end of the second week of infection. Expulsion from the jejunum requires the presence of immune T lymphocytes and IgG antibodies. Mucosal mast cells (MMCs) are a prominent part of the jejunal inflammatory response. They are derived from a hematopoietic stem cell, possibly the same precursor as basophils. Their differentiation is not absolutely T dependent but their accumulation at the site of infection is. The possible involvement of IgE antibodies and intestinal MMCs through a "leak lesion" is still uncertain. Increased mucus secretion from epithelial goblet cells is also a prominent feature of the inflammatory reaction at the site of infection. Goblet cell numbers increase two to four times at the onset of worm expulsion; this increase is regulated by T lymphocytes and possibly immune serum. The mechanism of mucus secretion in these infections is not clear; it may be a response to mast cell mediators. Together with antiworm antibodies, intestinal mucus may trap worms and prevent them from surviving in the intervillous spaces of the jejunum. Thus, expulsion of this intestinal parasite may occur through a nonspecific process that is induced by specific immune mechanisms.  相似文献   

17.
Analysis of the early stages of a challenge infection with Strongyloides ratti has shown that protection is expressed against the developing third-stage larval worms (L3) and prevents the maturation to adulthood of most larvae. Challenge after an immunizing infection that was restricted to the parenteral L3 migratory phase showed that some 10–40% of overall protection could be ascribed to systemic antilarval immunity. Some larvae were trapped in the skin at the site of injection whereas others failed to migrate to the head and lung of immune rats. Larvae arriving in the intestine at Days 3, 4, and 5 did not persist beyond Day 7 and 8. Studies using [75Se]methionine-labeled L3 showed a significant increase in fecal label in rats immunized by a complete infection. This loss did not occur to the same extent in rats immunized only with parenteral larvae. Significant rejection of worms transplanted to the intestine also indicated intestinal protection. The possible existence of large numbers of worms in a state of “arrested development” was excluded by their failure to appear after cortisone treatment and the absence of worm accumulation in radiolabeling studies. It is concluded that at least two responses operate against larval S. ratti, one is systemic and the other operates in the intestine against larvae in a manner that resembles the “rapid expulsion” rejection of Trichinella spiralis in immune rats.  相似文献   

18.
Mucosal mast cell (MMC) responses and worm recovery rates in rats infected with Echinostoma hortense were investigated from day 3 to day 56 post-infection (p.i.). Experimental infected group showed apparently higher number of MMC in each part of the small intestine than that of the control group. The number of MMC in the duodenum increased gradually after the infection and reached a peak on day 35 p.i. Thereafter, the number of MMC continued to decrease at a slow pace. The kinetics of MMC responses in the upper and lower jejunum were similar to that of the duodenum, but the number of MMC in the jejunum was lower. The worm recovery rate decreased with respect to time of which it was markedly reduced on day 49 and 56 p.i. The duration in which a high number of MMC appeared was similar to that in which a low rate in worm recovery was recorded. These results indicate that intestinal mastocytosis may play an important role in the expulsion of E. hortense.  相似文献   

19.
When maintained under SPF (specific pathogen free) conditions, Wistar rats had low and variable counts of adult Nippostrongylus brasiliensis. Worm counts were increased if rats were kept in solid rather than wire-bottom cages, if rats were maintained under non-SPF conditions, or if SPF rats were orally inoculated with gut contents from non-SPF rats. It is concluded that gut flora in SPF wistar rats directly or indirectly affects the numbers of larvae establishing as adult worms.  相似文献   

20.
The gastrointestinal nematode Nippostrongylus brasiliensis is thought to feed on host ingesta, and it is generally thought that the presence of ingesta determines the distribution of this parasite within the host intestine. However, these assertions have not been supported by direct evidence. The purpose of this study was to test the hypothesis that N. brasiliensis worms are preferentially found in regions of the host small intestine containing ingesta. The relationship between worm and ingesta distribution was investigated using mice infected with N. brasiliensis and killed on day 8 postinfection at 0130, 0730, 1330, or 1930 hr. There was an inverse relationship between worm and ingesta distributions, and the worms were distributed significantly more anteriad in the intestine than host ingesta, at all times during the 24 hr. To determine what the worms fed on, host ingesta, tissue, and blood were differentially labeled with the fluorescent dyes rhodamine B and Fluoresbrite. The results of this study suggest that N. brasiliensis feeds on the host's intestinal wall, and that habitat distribution of this parasite within the small intestine is not directly related to the presence of luminal ingesta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号