首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human small heat shock protein HspB6 (Hsp20) was modified by metabolic α-dicarbonyl compound methylglyoxal (MGO). At low MGO/HspB6 molar ratio, Arg13, Arg14, Arg27, and Arg102 were the primary sites of MGO modification. At high MGO/HspB6 ratio, practically, all Arg and Lys residues of HspB6 were modified. Both mild and extensive MGO modification decreased susceptibility of HspB6 to trypsinolysis and prevented its heat-induced aggregation. Modification by MGO was accompanied by formation of small quantities of chemically crosslinked dimers and did not dramatically affect quaternary structure of HspB6. Mild modification by MGO did not affect whereas extensive modification decreased interaction of HspB6 with HspB1. Phosphorylation of HspB6 by cyclic adenosine monophosphate (cAMP)-dependent protein kinase was inhibited after mild modification and completely prevented after extensive modification by MGO. Chaperone-like activity of HspB6 measured with subfragment 1 of skeletal myosin was enhanced after MGO modifications. It is concluded that Arg residues located in the N-terminal domain of HspB6 are easily accessible to MGO modification and that even mild modification by MGO affects susceptibility to trypsinolysis, phosphorylation by cAMP-dependent protein kinase, and chaperone-like activity of HspB6.  相似文献   

3.
Some properties of G84R and L99M mutants of HspB1 associated with peripheral distal neuropathies were investigated. Homooligomers formed by these mutants are larger than those of the wild type HspB1. Large oligomers of G84R and L99M mutants have compromised stability and tend to dissociate at low protein concentration. G84R and L99M mutations promote phosphorylation-dependent dissociation of HspB1 oligomers without affecting kinetics of HspB1 phosphorylation by MAPKAP2 kinase. Both mutants weakly interact with HspB6 forming small heterooligomers and being unable to form large heterooligomers characteristic for the wild type HspB1. G84R and L99M mutants possess lower chaperone-like activity than the wild type HspB1 with several model substrates. We suggest that G84R mutation affects mobility and accessibility of the N-terminal domain thus modifying interdimer contacts in HspB1 oligomers. The L99M mutation is located within the hydrophobic core of the α-crystallin domain close to the key R140 residue, and could affect the dimer stability.  相似文献   

4.
The missense mutation pG46S in the regulatory (R) domain of human phenylalanine hydroxylase (hPAH), associated with a severe form of phenylketonuria, generates a misfolded protein which is rapidly degraded on expression in HEK293 cells. When overexpressed as a MBP-G46S fusion protein, soluble and fully active tetrameric/dimeric forms are assembled and recovered in a metastable conformational state. When MBP is cleaved off, G46S undergoes a conformational change and self-associates with a lag phase and an autocatalytic growth phase (tetramers ? dimers), as determined by light scattering. The self-association is controlled by pH, ionic strength, temperature, protein concentration and the phosphorylation state of Ser16; the net charge of the protein being a main modulator of the process. A superstoichiometric amount of WT dimers revealed a 2-fold enhancement of the rate of G46S dimer self-association. Electron microscopy demonstrates the formation of higher-order oligomers and linear polymers of variable length, partly as a branching network, and partly as individual long and twisted fibrils (diameter ~ 145-300 Å). The heat-shock proteins Hsp70/Hsp40, Hsp90 and a proposed pharmacological PAH chaperone (3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one) partly inhibit the self-association process. Our data indicate that the G46S mutation results in a N-terminal extension of α-helix 1 which perturbs the wild-type α-β sandwich motif in the R-domain and promotes new intermolecular contacts, self-association and non-amyloid fibril formation. The metastable conformational state of G46S as a MBP fusion protein, and its self-association propensity when released from MBP, may represent a model system for the study of other hPAH missense mutations characterized by misfolded proteins.  相似文献   

5.
Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5–188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.  相似文献   

6.
Small heat shock proteins form large cytosolic assemblies from an “α-crystallin domain” (ACD) flanked by sequence extensions. Mutation of a conserved arginine in the ACD of several human small heat shock protein family members causes many common inherited diseases of the lens and neuromuscular system. The mutation R120G in αB-crystallin causes myopathy, cardiomyopathy and cataract. We have solved the X-ray structure of the excised ACD dimer of human αB R120G close to physiological pH and compared it with several recently determined wild-type vertebrate ACD dimer structures. Wild-type excised ACD dimers have a deep groove at the interface floored by a flat extended “bottom sheet.” Solid-state NMR studies of large assemblies of full-length αB-crystallin have shown that the groove is blocked in the ACD dimer by curvature of the bottom sheet. The crystal structure of R120G ACD dimer also reveals a closed groove, but here the bottom sheet is flat. Loss of Arg120 results in rearrangement of an extensive array of charged interactions across this interface. His83 and Asp80 on movable arches on either side of the interface close the groove by forming two new salt bridges. The residues involved in this extended set of ionic interactions are conserved in Hsp27, Hsp20, αA- and αB-crystallin sequences. They are not conserved in Hsp22, where mutation of the equivalent of Arg120 causes neuropathy. We speculate that the αB R120G mutation disturbs oligomer dynamics, causing the growth of large soluble oligomers that are toxic to cells by blocking essential processes.  相似文献   

7.
Distinct biochemical activities have been reported for small and large molecular complexes of heat shock protein 27 (HSP27), respectively. Using glycerol gradient ultracentrifugation and chemical cross-linking, we show here that Chinese hamster HSP27 is expressed in cells as homotypic multimers ranging from dimers up to 700-kDa oligomers. Treatments with arsenite, which induces phosphorylation on Ser15 and Ser90, provoked a major change in the size distribution of the complexes that shifted from oligomers to dimers. Ser90 phosphorylation was sufficient and necessary for causing this change in structure. Dimer formation was severely inhibited by replacing Ser90 with Ala90 but not by replacing Ser15 with Ala15. Using the yeast two-hybrid system, two domains were identified that were responsible for HSP27 intermolecular interactions. One domain was insensitive to phosphorylation and corresponded to the C-terminal alpha-crystallin domain. The other domain was sensitive to serine 90 phosphorylation and was located in the N-terminal region of the protein. Fusion of this N-terminal domain to firefly luciferase conferred luciferase with the capacity to form multimers that dissociated into monomers upon phosphorylation. A deletion within this domain of residues Arg5-Tyr23, which contains a WDPF motif found in most proteins of the small heat shock protein family, yielded a protein that forms only phosphorylation-insensitive dimers. We propose that HSP27 forms stable dimers through the alpha-crystallin domain. These dimers further multimerize through intermolecular interactions mediated by the phosphorylation-sensitive N-terminal domain.  相似文献   

8.
Formation of heterooligomeric complexes of human small heat shock proteins (sHsp) HspB6 (Hsp20) and HspB1 (Hsp27) was analyzed by means of native gel electrophoresis, analytical ultracentrifugation, chemical cross-linking and size-exclusion chromatography. HspB6 and HspB1 form at least two different complexes with apparent molecular masses 100–150 and 250–300 kDa, and formation of heterooligomeric complexes is temperature dependent. These complexes are highly mobile, easily exchange their subunits and are interconvertible. The stoichiometry of HspB1 and HspB6 in both complexes is close to 1/1 and smaller complexes are predominantly formed at low, whereas larger complexes are predominantly formed at high protein concentration. Formation of heterooligomeric complexes does not affect the chaperone-like activity of HspB1 and HspB6 if insulin or skeletal muscle F-actin was used as model protein substrates. After formation of heterooligomeric complexes the wild type HspB1 inhibits the rate of phosphorylation of HspB6 by cAMP-dependent protein kinase. The 3D mutant mimicking phosphorylation of HspB1 also forms heterooligomeric complexes with HspB6, but is ineffective in inhibition of HspB6 phosphorylation. Inside of heterooligomeric complexes HspB6 inhibits phosphorylation of HspB1 by MAPKAP2 kinase. Thus, in heterooligomeric complexes HspB6 and HspB1 mutually affect the structure of each other and formation of heterooligomeric complexes might influence diverse processes depending on small heat shock proteins.  相似文献   

9.
Several human small heat shock proteins (sHsps) are phosphorylated oligomeric chaperones that enhance stress resistance. They are characterized by their ability to interact and form polydispersed hetero-oligomeric complexes. We have analyzed the cellular consequences of the stable expression of either wild type HspB5 or its cataracts and myopathies inducing R120G mutant in growing and oxidative stress treated HeLa cells that originally express only HspB1. Here, we describe that wild type and mutant HspB5 induce drastic and opposite effects on cell morphology and oxidative stress resistance. The cellular distribution and phosphorylation of these polypeptides as well as the oligomerization profile of the resulting hetero-oligomeric complexes formed by HspB1 with the two types of exogenous polypeptides revealed the dominant effects induced by HspB5 polypeptides towards HspB1. The R120G mutation enhanced the native size and salt resistance of HspB1-HspB5 complex. However, in oxidative conditions the interaction between HspB1 and mutant HspB5 was drastically modified resulting in the aggregation of both partners. The mutation also induced the redistribution of HspB1 phosphorylated at serine 15, originally observed at the level of the small oligomers that do not interact with wild type HspB5, to the large oligomeric complex formed with mutant HspB5. This phosphorylation stabilized the interaction of HspB1 with mutant HspB5. A dominant negative effect towards HspB1 appears therefore as an important event in the cellular sensitivity to oxidative stress mediated by mutated HspB5 expression. These observations provide novel data that describe how a mutated sHsp can alter the protective activity of another member of this family of chaperones.  相似文献   

10.
Nine proteins have been assigned to date to the superfamily of mammalian small heat shock proteins (sHsps): Hsp27 (HspB1, Hsp25), myotonic dystrophy protein kinase-binding protein (MKBP) (HspB2), HspB3, alphaA-crystallin (HspB4), alphaB-crystallin (HspB5), Hsp20 (p20, HspB6), cardiovascular heat shock protein (cvHsp [HspB7]), Hsp22 (HspB8), and HspB9. The most pronounced structural feature of sHsps is the alpha-crystallin domain, a conserved stretch of approximately 80 amino acid residues in the C-terminal half of the molecule. Using the alpha-crystallin domain of human Hsp27 as query in a BLAST search, we found sequence similarity with another mammalian protein, the sperm outer dense fiber protein (ODFP). ODFP occurs exclusively in the axoneme of sperm cells. Multiple alignment of human ODFP with the other human sHsps reveals that the primary structure of ODFP fits into the sequence pattern that is typical for this protein superfamily: alpha-crystallin domain (conserved), N-terminal domain (less conserved), central region (variable), and C-terminal tails (variable). In a phylogenetic analysis of 167 proteins of the sHsp superfamily, using Bayesian inference, mammalian ODFPs form a clade and are nested within previously identified sHsps, some of which have been implicated in cytoskeletal functions. Both the multiple alignment and the phylogeny suggest that ODFP is the 10th member of the superfamily of mammalian sHsps, and we propose to name it HspB10 in analogy with the other sHsps. The C-terminal tail of HspB10 has a remarkable low-complexity structure consisting of 10 repeats of the motif C-X-P. A BLAST search using the C-terminal tail as query revealed similarity with sequence elements in a number of Drosophila male sperm proteins, and mammalian type I keratins and cornifin-alpha. Taken together, the following findings suggest a specialized role of HspB10 in cytoskeleton: (1) the exclusive location in sperm cell tails, (2) the phylogenetic relationship with sHsps implicated in cytoskeletal functions, and (3) the partial similarity with cytoskeletal proteins.  相似文献   

11.
Small heat shock proteins (sHsps) are molecular chaperones that protect cells from cytotoxic effects of protein misfolding and aggregation. HspB1, an sHsp commonly associated with senile plaques in Alzheimer's disease (AD), prevents the toxic effects of Aβ aggregates in vitro. However, the mechanism of this chaperone activity is poorly understood. Here, we observed that in two distinct transgenic mouse models of AD, mouse HspB1 (Hsp25) localized to the penumbral areas of plaques. We have demonstrated that substoichiometric amounts of human HspB1 (Hsp27) abolish the toxicity of Aβ oligomers on N2a (mouse neuroblastoma) cells. Using biochemical methods, spectroscopy, light scattering, and microscopy methods, we found that HspB1 sequesters toxic Aβ oligomers and converts them into large nontoxic aggregates. HspB1 was overexpressed in N2a cells in response to treatment with Aβ oligomers. Cultured neurons from HspB1-deficient mice were more sensitive to oligomer-mediated toxicity than were those from wild-type mice. Our results suggest that sequestration of oligomers by HspB1 constitutes a novel cytoprotective mechanism of proteostasis. Whether chaperone-mediated cytoprotective sequestration of toxic aggregates may bear clues to plaque deposition and may have potential therapeutic implications must be investigated in the future.  相似文献   

12.
Autosomal-dominant missense mutations in LRRK2 (leucine-rich repeat kinase 2) are a common genetic cause of PD (Parkinson's disease). LRRK2 is a multidomain protein with kinase and GTPase activities. Dominant mutations are found in the domains that have these two enzyme activities, including the common G2019S mutation that increases kinase activity 2-3-fold. However, there is also a genetic variant in some populations, G2385R, that lies in a C-terminal WD40 domain of LRRK2 and acts as a risk factor for PD. In the present study we show that the G2385R mutation causes a partial loss of the kinase function of LRRK2 and deletion of the C-terminus completely abolishes kinase activity. This effect is strong enough to overcome the kinase-activating effects of the G2019S mutation in the kinase domain. Hsp90 (heat-shock protein of 90 kDa) has an increased affinity for the G2385R variant compared with WT (wild-type) LRRK2, and inhibition of the chaperone binding combined with proteasome inhibition leads to association of mutant LRRK2 with high molecular mass native fractions that probably represent proteasome degradation pathways. The loss-of-function of G2385R correlates with several cellular phenotypes that have been proposed to be kinase-dependent. These results suggest that the C-terminus of LRRK2 plays an important role in maintaining enzymatic function of the protein and that G2385R may be associated with PD in a way that is different from kinase-activating mutations. These results may be important in understanding the differing mechanism(s) by which mutations in LRRK2 act and may also have implications for therapeutic strategies for PD.  相似文献   

13.
In vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters). Although heat-induced changes in the oligomerization status of Hsp27 correlate with its phosphorylation and nuclear translocation, Hsp27 phosphorylation alone is not sufficient for effective nuclear translocation of HspB1. Using firefly luciferase as a heat-sensitive reporter protein, we demonstrate that HspB1 expression in HspB1-deficient fibroblasts enhances protein refolding after heat shock. The positive effect of HspB1 on refolding is completely diminished by overexpression of Bag-1 (Bcl-2-associated athanogene), the negative regulator of Hsp70, consistent with the idea of HspB1 being the substrate holder for Hsp70. Although HspB1 and luciferase both accumulate in nuclear granules after heat shock, our results suggest that this is not related to the refolding activity of HspB1. Rather, granular accumulation may reflect a situation of failed refolding where the substrate is stored for subsequent degradation. Consistently, we found 20S proteasomes concentrated in nuclear granules of HspB1 after heat shock. We conclude that HspB1 contributes to an increased chaperone capacity of cells by binding unfolded proteins that are hereby kept competent for refolding by Hsp70 or that are sorted to nuclear granules if such refolding fails.  相似文献   

14.
A number of phosphomimicking mutants (replacement of Ser/Thr residues by Asp) of human small heat shock protein HspB8 were obtained and phosphorylation of the wild type HspB8 and its mutants by ERK1 kinase was analyzed in vitro. Mutation S159D does not affect phosphorylation, whereas mutations S24D and S27D equally moderately inhibited and mutation T87D strongly inhibited phosphorylation of HspB8. The double mutations S24D/T87D and S27D/T87D induced very strong inhibitory effect and the triple mutations S24D/S27D/T87D completely prevented phosphorylation catalyzed by ERK1. Thus, Ser24 and Thr87, found to be phosphorylated in vivo, are among the sites phosphorylated by ERK1 in HspB8 in vitro. Mutations S24D and T87D affect intrinsic tryptophan fluorescence and susceptibility to chymotrypsinolysis of HspB8. Phosphomimicking mutations and phosphorylation promote concentration-dependent association of HspB8 subunits. Mutations S24D and S27D decrease, whereas mutation T87D increases the chaperone-like activity of HspB8. It is concluded that phosphorylation catalyzed by ERK1 might affect the structure and chaperone-like activity of HspB8 and therefore can be important for regulation of interaction of HspB8 with different target proteins.  相似文献   

15.
Human Hsp27 oligomerizes in vivo in a phosphorylation-dependent manner that regulates the functional activity of the protein. We have studied the self-association of wild-type Hsp27 by both sedimentation velocity and sedimentation equilibrium analysis and established that the protein forms an equilibrium mixture of monomers/dimers, tetramers, 12-mers and 16-mers (20 mM Tris-HCl (pH 8.4), 100 mM NaCl, 20 degrees C). Corresponding analysis of the S15D/S78D/S82D triple variant, which is believed to mimic the behavior of phosphorylated Hsp27, establishes that this form of the protein forms primarily monomers and dimers but also forms a small fraction of very large oligomers. Variants in which critical N-terminal sequences have been deleted exhibit oligomerization behavior that is intermediate between that of the triple variant and the wild-type protein. On the other hand a C-terminal sequence deletion variant forms larger oligomers than does the wild-type protein, but also exhibits a greater fraction of smaller oligomers. Notably, the presence of an N-terminal His6-tag induces formation of much larger oligomers than observed for any other form of the protein. The results of this work establish that the wild-type protein forms smaller oligomers than previously believed, define the roles played by various structural domains in Hsp27 oligomerization, and provide improved molecular probes with better-defined properties for the design of future experiments.  相似文献   

16.
Mutations of human αB-crystallin cause congenital cataract and cardio-myopathy by protein aggregation and cell death. How mutations of αB-crystallin become pathogenic is poorly understood. To better understand the cellular events related to protein aggregation and cell death, we transfected cataract and cardio-myopathy causing mutants, R11H, P20S, R56W, D109H, R120G, D140N, G154S, R157H and A171T in HeLa cells and assessed protein aggregation and apoptosis by laser scanning confocal microspy (LSCM) and flow cytometry. Cells individually transfected with the mutants, D109H, R120G, D140N and R157H significantly showed more aggregates. Cells overexpressed with HspB1 (Hsp27) significantly sequestered aggregates in all mutants and suppressed apoptosis in mutants, P20S, D109H and A171T. Significant increases of apoptotic cells as stained with Annexin V were observed in mutants, D109H and A171T transfected cells. Cells positive for active caspase-3 was increased in the mutant, D109H. Thus the previously recognized anti-apoptotic functions of αB-crystallin were compromised in these mutants.  相似文献   

17.
Human small heat shock protein 27 (Hsp27) undergoes concentration-dependent equilibrium dissociation from an ensemble of large oligomers to a dimer. This phenomenon plays a critical role in Hsp27 chaperone activity in vitro enabling high affinity binding to destabilized proteins. In vivo dissociation, which is regulated by phosphorylation, controls Hsp27 role in signaling pathways. In this study, we explore the sequence determinants of Hsp27 dissociation and define the structural basis underlying the increased affinity of Hsp27 dimers to client proteins. A systematic cysteine mutagenesis is carried out to identify residues in the N-terminal domain important for the equilibrium between Hsp27 oligomers and dimers. In addition, spin-labels were attached to the cysteine mutants to enable electron paramagnetic resonance (EPR) analysis of residue environment and solvent accessibility in the context of the large oligomers, upon dissociation to the dimer, and following complex formation with the model substrate T4 Lysozyme (T4L). The mutagenic analysis identifies residues that modulate the equilibrium dissociation in favor of the dimer. EPR analysis reveals that oligomer dissociation disrupts subunit contacts leading to the exposure of Hsp27 N-terminal domain to the aqueous solvent. Moreover, regions of this domain are highly dynamic with no evidence of a packed core. Interaction between T4L and sequences in this domain is inferred from transition of spin-labels to a buried environment in the substrate/Hsp27 complex. Together, the data provide the first structural analysis of sHSP dissociation and support a model of chaperone activity wherein unstructured and highly flexible regions in the N-terminal domain are critical for substrate binding.  相似文献   

18.
19.
Human transforming growth factor β induced protein (TGFBIp) is composed of 683 residues, including an N-terminal cysteine-rich (EMI) domain, four homologous fasciclin domains, and an Arg-Gly-Asp (RGD) motif near the C-terminus. The protein is of interest because mutations in the TGFBI gene encoding TGFBIp lead to corneal dystrophy (CD), a condition where protein aggregates within the cornea compromise transparency. The complete three-dimensional structure of TGFBIp is not yet available, with the exception of a partial X-ray structure of the archetype FAS1 domain derived from Drosophila fasciclin-1. In this study, small-angle X-ray scattering (SAXS) models of intact wild-type (WT) human TGFBIp and a mutant (R124H) are presented. The mutation R124H leads to a variant of granular CD. The deduced structure of the TGFBIp monomer consists of four FAS1 domains in a simple “beads-on-a-string” arrangement, constructed by the superimposition of four consecutive Drosophila fasciclin domains. The SAXS-based model of the TGFBIp R124H mutant displayed no structural differences from WT. Both WT TGFBIp and the R124H mutant formed trimers at higher protein concentrations. The similar association properties and three-dimensional shape of the two proteins suggest that the mutation does not induce any major structural rearrangements, but points towards the role of other corneal-specific factors in the formation of corneal R124H deposits.  相似文献   

20.
A dominant mutation in the gene for copper-zinc superoxide dismutase (SOD1) is the most frequent cause of the inherited form of amyotrophic lateral sclerosis. Mutant SOD1 provokes progressive degeneration of motor neurons by an unidentified acquired toxicity. Exploiting both affinity purification and mass spectrometry, we identified a novel interaction between heat-shock protein 105 (Hsp105) and mutant SOD1. We detected this interaction both in spinal cord extracts of mutant SOD1(G93A) transgenic mice and in cultured neuroblastoma cells. Expression of Hsp105, which is found in mouse motor neurons, was depressed in the spinal cords of SOD1(G93A) mice as disease progressed, while levels of expression of two other heat-shock proteins, Hsp70 and Hsp27, were elevated. Moreover, Hsp105 suppressed the formation of mutant SOD1-containing aggregates in cultured cells. These results suggest that techniques that raise levels of Hsp105 might be promising tools for alleviation of the mutant SOD1 toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号