首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The primary structures of the immunity (Imm) and lysis (Lys) proteins, and the C-terminal 205 amino acid residues of colicin E8 were deduced from nucleotide sequencing of the 1,265 bp ClaI-PvuI DNA fragment of plasmid ColE8-J. The gene order is col-imm-lys confirming previous genetic data. A comparison of the colicin E8 peptide sequence with the available colicin E2-P9 sequence shows an identical receptor-binding domain but 20 amino acid replacements and a clustering of synonymous codon usage in the nuclease-active region. Sequence homology of the two colicins indicates that they are descended from a common ancestral gene and that colicin E8, like colicin E2, may also function as a DNA endonuclease. The native ColE8 imm (resident copy) is 258 bp long and is predicted to encode an acidic protein of 9,604 mol. wt. The six amino acid replacements between the resident imm and the previously reported non-resident copy of the ColE8 imm ([E8 imm]) found in the ribonuclease-producing ColE3-CA38 plasmid offer an explanation for the incomplete protection conferred by [E8 Imm] to exogenously added colicin E8. Except for one nucleotide and amino acid change in the putative signal peptide sequence, the ColE8 lys structure is identical to that present in ColE2-P9 and ColE3-CA38.  相似文献   

3.
W R Odom  T M Bricker 《Biochemistry》1992,31(24):5616-5620
The structural organization of photosystem II proteins has been investigated by use of the zero-length protein cross-linking reagent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and monoclonal and polyclonal antibody reagents. Photosystem II membranes were treated with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide which cross-links amino groups to carboxyl groups which are in van der Waals contact. This treatment did not affect the oxygen evolution rates of these membranes and increased the retention of oxygen evolution after CaCl2 washing. Analysis of the proteins cross-linked by this treatment indicated that two cross-linked species with apparent molecular masses of 95 and 110 kDa were formed which cross-reacted with antibodies against both the 33-kDa manganese-stabilizing protein and the chlorophyll protein CPa-1. Cleavage of the 110-kDa cross-linked species with cyanogen bromide followed by N-terminal sequence analysis was used to identify the peptide fragments of CPa-1 and the manganese-stabilizing protein which were cross-linked. Two cyanogen bromide fragments were identified with apparent molecular masses of 50 and 25 kDa. N-Terminal sequence analysis of the 50-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa fragment of CPa-1 and the intact manganese-stabilizing protein. This strongly suggests that the manganese-stabilizing protein is cross-linked to the large extrinsic loop domain of CPa-1. N-Terminal analysis of the 25-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa peptide of CPa-1 and the N-terminal 8-kDa peptide of the manganese-stabilizing protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
L K Frankel  T M Bricker 《Biochemistry》1992,31(45):11059-11064
The structural organization of photosystem II proteins has been investigated by use of the amino group-labeling reagent N-hydroxysuccinimidobiotin (NHS-biotin) and calcium chloride-washed photosystem II membranes. We have previously shown that the presence of the extrinsic, manganese-stabilizing protein on photosystem II membranes prevents the modification of lysyl residues located on the chlorophyll protein CPa-1 (CP-47) by NHS-biotin [Bricker, T. M., Odom, W. R., & Queirolo, C. B. (1988) FEBS Lett. 231, 111-117]. Upon removal of the manganese-stabilizing protein by calcium chloride-washing, CPa-1 can be specifically modified by treatment with NHS-biotin. Preparative quantities of biotinylated CPa-1 were subjected to chemical cleavage with cyanogen bromide. Two major biotinylated peptides were identified with apparent molecular masses of 11.8 and 15.7 kDa. N-terminal sequence analysis of these peptides indicated that the 11.8-kDa peptide was 232G-330M and that the 15.7-kDa peptide was 360P-508V. The 15.7-kDa CNBr peptide was subjected to limited tryptic digestion. The two smallest tryptic fragments identified migrated at apparent molecular masses of 9.1 (nonbiotinylated) and 7.5 kDa (biotinylated). N-terminal sequence analysis and examination of the predicted amino acid sequences of these peptides suggest that the 9.1-kDa fragment was 422R-508V and that the 7.5-kDa fragment was 360P-421A. These results strongly suggest that two NHS-biotinylated domains, 304K-321K and 389K-419K, become exposed on CPa-1 when the manganese-stabilizing protein is removed by CaCl2 treatment. Both of these domains lie in the large extrinsic loop E of CPa-1.  相似文献   

5.
Twelve cyanogen bromide fragments (CB1-12) from bovine plasma fibronectin have been isolated and eight of these completely sequenced. Altogether they account for 502 of the total expected 1880 residues in each of the two chains of fibronectin. Four of these fragments (CB1-4) constitute residues 1-289 in fibronectin with CB4 overlapping the N-terminal 29-kDa plasmic fragment to the second plasmic fragment, of 170-kDa in fibronectin. Fragments CB 5-9 are all contained within a 45-kDa gelatin-binding region, which is N-terminal in the 170-kDa fragment. The sequence of two of these five fragments in the 45-kDa fragment (CB7-8) contains two mutually homologous stretches with 57% sequence identity. Another two fragments (CB10-11) are derived from the heparin-binding region of the 170-kDa fragment. CB12 constitutes the C-terminal 13-residue stretch in fibronectin and contains a partly phosphorylated serine residue in the C-terminal sequence: -Arg-Glu-Asp-Ser(P)-Arg-Glu.  相似文献   

6.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

7.
Colicin E3 and its immunity genes   总被引:19,自引:0,他引:19  
A DNA segment of plasmid ColE3-CA38 was cloned into pBR328 and its nucleotide sequence was determined. This segment contains the putative promoter-operator region, the structural genes of protein A (gene A) and protein B (gene B) of colicin E3, and a part of gene H. Just behind the promoter region, there is an inverted repeat structure of two 'SOS boxes', the specific binding site of the lexA protein. This suggests that the expression of colicin E3 is regulated directly by the lexA protein. Genes A and B face the same direction, with an intergenic space of nine nucleotides between them. ColE3-CA38 and ColE1-K30 are homologous in their promoter-operator regions, but hardly any homology was found in their structural genes. On the other hand, ColE3-CA38 is fairly homologous to CloDF13 throughout the regions sequenced, with some exceptions including putative receptor-binding regions. By deletion mapping of the immunity gene and recloning of gene B, it was shown genetically that protein B itself is the actual immunity substance of colicin E3. It was also found that the expression of E3 immunity partially depends on the recA function. Thus, we propose two modes of expression of E3 immunity: in the uninduced state, only a slight amount of protein B is produced constitutively to protect the cell from being attacked by the exogenous colicin; and in the SOS-induced state, a large amount of protein B is produced to protect the protein synthesis system of the host cell from ribosome inactivation by endogenously produced colicin E3.  相似文献   

8.
Hemoglobin, aldolase and glyceraldehyde 3-phosphate dehydrogenase are known to bind to the cytoplasmic domain of band 3 protein. Binding of glycolytic enzymes to band 3 protein is inhibited by its amino-terminal fragments. To precisely localize the sequence portion of band 3 protein to which hemoglobin binds and to see whether the same region of amino-acid sequence binds both hemoglobin and glycolytic enzymes, a simple, direct solid-phase binding assay was developed. Peptides generated from the 23-kDa fragment by trypsin, cyanogen bromide and mild acid hydrolysis were used as inhibitors to determine the minimal sequence structure involved in the binding of the 23-kDa fragment to hemoglobin. The shortest peptide which inhibits the binding of the 23-kDa fragment is an acid cleavage peptide containing the sequence positions 1 to 23. This sequence is unusual as 14 of its residues are negatively charged, it contains no basic residues and has its amino terminus blocked. Using aldolase, glyceraldehyde-3-phosphate dehydrogenase and hemoglobin as competitive inhibitors in the binding of 23-kDa fragment, the affinity of hemoglobin to this fragment appears several-fold weaker than that of both the enzymes. These findings demonstrate that glycolytic enzymes and hemoglobin bind competitively to the same polyanionic sequence region of band 3 protein.  相似文献   

9.
Hirao I  Harada Y  Nojima T  Osawa Y  Masaki H  Yokoyama S 《Biochemistry》2004,43(11):3214-3221
Colicin E3 is a ribonuclease that specifically cleaves at the site after A1493 of 16S rRNA in Escherichia coli ribosomes, thus inactivating translation. To analyze the interaction between colicin E3 and 16S rRNA, we used in vitro selection to isolate RNA ligands (aptamers) that bind to the C-terminal ribonuclease domain of colicin E3, from a degenerate RNA pool. Although the aptamers were not digested by colicin E3, they specifically bound to the protein (K(d) = 2-14 nM) and prevented the 16S rRNA cleavage by the C-terminal ribonuclease domain. Among these aptamers, aptamer F2-1 has a sequence similar to that of the region around the cleavage site from residue 1484 to 1506, including the decoding site, of E. coli 16S rRNA. The secondary structure of aptamer F2-1 was determined by the base pair covariation among the variants obtained by a second in vitro selection, using a doped RNA pool based on the aptamer F2-1 sequence. The sequence and structural similarities between the aptamers and 16S rRNA provide insights into the recognition of colicin E3 by this specific 16S rRNA region.  相似文献   

10.
The location of the covalent binding site of the third component of complement (C3) on the IgG heavy chain was determined by sequence analysis of peptides generated by cyanogen bromide digestion of C3-IgG adducts. Activation of the alternative pathway by incubation of heat-aggregated human IgG1 with fresh normal human plasma formed covalent adducts of C3b-IgG. CNBr peptides of these adducts were transferred to a polyvinylidene difluoride membrane, and amino-terminal sequences were determined. A 40-kDa dipeptide containing the covalent bond was identified by labeling the free thiol group (generated during activation of the internal thioester of C3b) with iodo[1-14C]acetamide and analyzed by amino acid sequencing. The resulting double sequence suggested an adduct with NH2 termini at residue 938 (pro-C3 numbering) of C3 (75 residues NH2-terminal to the thioester) and residue 84 in the variable region of the IgG heavy chain. These results combined with results from hydroxylamine treatment (splits ester linkage between C3b and IgG) imply that this adduct peptide consists of a 22-kDa C3 fragment and an 18-kDa IgG fragment. Therefore, C3 binds covalently within the region extending from the last 20 residues of the variable region through the first 20 residues of CH2.  相似文献   

11.
The carboxy-terminal cyanogen bromide fragment of the human fibrinogen beta-chain has been isolated and its structure determined. It is a nonapeptide with the sequence Lys-Ile-Arg-Pro-Phe-Phe-Pro-Gln-Gln and is homologous with a portion of the carboxy-terminal cyanogen bromide fragment of the gamma-chain. The peptide has also been isolated in full yield from cyanogen bromide digests of the plasmin-derived fragment D, indicating that the carboxy-terminal region of the beta-chain is resistant to plasmin digestion. In contrast, a small portion of the corresponding gamma-chain carboxy-terminal region was missing in the same fragment D.  相似文献   

12.
A plasmid was constructed which allowed easy and efficient production and purification of the NH2-terminal domain of colicin A. In only three steps, an homogenous 18-kDa polypeptide was obtained. The NH2- and COOH-terminal sequences of the protein were determined and showed that it corresponded to the NH2-terminal 171 amino acid residues of the 63-kDa colicin A. Although colicin A is a highly asymmetric protein, hydrodynamic studies indicated that the NH2-terminal domain (designated AT) has a globular structure. This fragment is not the receptor-binding domain of colicin A but is required for the transfer of colicin A across the outer membrane of sensitive cells. However, it has a low affinity for phospholipid films and this affinity is not pH-dependent, in contrast to that of colicin A.  相似文献   

13.
Using nondegradative isolation procedures, we have purified and characterized the Mr 24,000 phosphoprotein from developing bovine and human bone where it constitutes 5% of the noncollagenous protein in the mineral compartment. This hydroxyproline-containing protein could not be cleaved by cyanogen bromide. The purified, intact product spontaneously formed a complex consistent with a collagen-like trimer that remained a trimer even in sodium dodecyl sulfate-polyacrylamide gels. The ability to form the complex was lost upon treatment with bacterial collagenase, a treatment that resulted in an NH2-terminally blocked fragment of Mr 17,000. After deblocking, the NH2-terminus of the intact, Mr 24,000 bovine product was shown to have virtually the same amino acid sequence (residues 1-24 with asparagine rather than aspartic acid at position 20 as reported earlier by Horlein et al. (Horlein, D., Fietzek, P. P., Wachter, E., Lapiere, C. M., and Kuhn, K. (1979) Eur. J. Biochem. 90, 31-38) as the amino-terminal segment of dermatosparatic calf skin alpha 1 type I procollagen. Furthermore, pulse-chase studies showed a precursor-product relationship between procollagen and the Mr 24,000 protein. Anti-serum made against the bovine bone protein bound to bands on electrotransfers that were consistent with the positions of both alpha 1(I) procollagen and the procollagen chain missing its COOH-terminal extension peptide (pN-alpha 1(I), as well as the original Mr 24,000 product in extracts of bone, skin, tendon, cornea, and other type I collagen-containing tissues. Fetal calf serum contained an average of 106 micrograms/ml of the Mr 24,000 protein as determined by quantitative enzyme-linked immunosorbent assay. The only serine residue in the bovine bone protein was phosphorylated. It is unknown whether the corresponding collagen NH2-terminal pro-peptides in other tissues and serum are similarly phosphorylated.  相似文献   

14.
The 61-kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins and kills them by hydrolyzing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies [Collins et al. (2002) J. Mol. Biol. 318, 787-904; MacDonald et al. (2004), J. Biomol. NMR 30, 81-96] have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is intrinsically disordered and contains clusters of interacting side chains. To further define the properties of this region of colicin E9, we have investigated the effects on the dynamical and TolB-binding properties of three mutations of colicin E9 that inactivate it as a toxin. The mutations were contained in a fusion protein consisting of residues 1-61 of colicin E9 connected to the N terminus of the E9 DNase by an eight-residue linking sequence. The NMR data reveals that the mutations cause major alterations to the properties of some of the clusters, consistent with some form of association between them and other more distant parts of the amino acid sequence, particularly toward the N terminus of the protein. However, (15)N T(2) measurements indicates that residues 5-13 of the fusion protein bound to the 43-kDa TolB remain as flexible as they are in the free protein. The NMR data point to considerable dynamic ordering within the intrinsically disordered translocation domain of the colicin that is important for creating the TolB-binding site. Furthermore, amino acid sequence considerations suggest that the clusters of amino acids occur because of the size and polarities of the side chains forming them influenced by the propensities of the residues within the clusters and those immediately surrounding them in sequence space to form beta turns.  相似文献   

15.
A calmodulin and alpha-subunit binding domain in human erythrocyte spectrin   总被引:3,自引:0,他引:3  
Human erythrocyte spectrin binds calmodulin weakly under native conditions. This binding is enhanced in the presence of urea. The site responsible for this enhanced binding in urea has now been shown to reside in a specific region of the spectrin beta-subunit. Cleavage of spectrin with trypsin, cyanogen bromide or 2-nitro-5-thiocyanobenzoic acid generates fragments of the molecule which retain the ability to bind calmodulin under denaturing conditions. The origin of these fragments, identified by two-dimensional peptide mapping, is the terminal region of the spectrin beta-IV domain. The smallest peptide active in calmodulin binding is a 10 000 Mr fragment generated by cyanogen bromide cleavage. Only the intact 74 000 Mr fragment generated by trypsin (the complete beta-IV domain) retains the capacity to reassociate with the isolated alpha-subunit of spectrin. The position of a putative calmodulin binding site near a site for subunit-subunit association and protein 4.1 and actin binding suggests a possible role in vivo for calmodulin regulation of the spectrin-actin membrane skeleton or for regulation of subunit-subunit associations. This beta-subunit binding site in erythrocyte spectrin is found in a region near the NH2-terminus at a position analogous to the alpha-subunit calmodulin binding site previously identified in a non-erythroid spectrin by ultrastructural studies.  相似文献   

16.
In an effort to develop derivatives of the Escherichia coli antimicrobial protein colicin E9 that exhibit novel interactions with a target cell, we mutagenized a 10-amino acid region located at the C terminus of the colicin receptor-binding domain. We subsequently selected for those colicin molecules that retain the antimicrobial phenotype and found that, despite a mutagenic strategy that alters every amino acid in the targeted domain, more than 70% of the engineered colicins retained antimicrobial activity. This result is all the more surprising given the extensive phylogenetic conservation of this receptor-binding domain, which originally suggested the operation of strong selective constraints on the amino acid sequence of this region. This apparent contradiction between our experimental results and the comparative data is resolved by exploring the fitness consequences of the experimentally induced amino acid substitutions. In 17 of 52 cases we examined, the fitness of cells harboring the functional engineered colicins was lower than that of our control line (containing wild-type colicin E9), and in 33 of 52 cases, equal to it. Paradoxically, two of the engineered colicins appear to confer a higher fitness to the producer cell lines. While the mechanism linking changes in the amino acid sequence of the colicin receptor-binding domain and the growth rate of the cells remains unclear, these results illustrate the surprising versatility of the colicin/receptor interaction and underscore the importance of distinguishing molecular function from organismal fitness.  相似文献   

17.
Fragments obtained from bovine growth hormone (somatotropin) by cyanogen bromide cleavage were isolated and identified. Their activities were investigated in a radioimmunoassay for bovine growth hormone and in a radioreceptor assay for growth hormone which uses membrane-associated receptors from the liver of a pregnant rabbit. At least one antigenic determinant and the receptor-binding site could be located in the sequence comprising residues 1-124/6-124 plus 150–179 (disulfide-linked), although they appeared not to be identical. An apparent increase in affinity compared with unfractionated cyanogen bromide-cleaved hormone was observed in both assays for the fraction containing these fragments. Neither intactness of methionyl residues nor that of the hormone appeared to be absolutely required for antibody-binding and receptor-binding activity (although other antigenic determinants may have been lost as a result of cleavage). However, the activities of the disulfide-linked fragment were low, indicating that conformational or other changes had modified the antibody-binding and receptor-binding sites.  相似文献   

18.
Conformational investigations, using circular dichroism, on the pore-forming protein, colicin A (Mr 60 000), and a C-terminal bromelain fragment (Mr 20 000) were undertaken to estimate their secondary structure and to search for pH-dependent conformational changes. Colicin A and the bromelain peptide are mainly alpha-helical with an enrichment of the alpha-helical content in the C-terminal domain carrying the ionophoric activity. The non-negligible beta-sheet structure in the C-terminal domain is unstable and is easily transformed into alpha-helix upon decreasing the polarity of the solvent. No evidence of pH-dependent conformational modification, correlated with modification of colicin A activity, could be obtained. The secondary structure estimated on the basis of experimental data favoured a model in which the pore is built of a minimal number of six transmembrane alpha-helical segments. Search for such segments in the amino acid sequence of the C-terminal domain of colicin A was carried out by combining secondary structure prediction methods with hydrophobicity and hydrophobic movement calculations. Similar calculations on the C-terminal domains of colicin E1 and IB indicate a common structure of the pores formed by colicin A, E1 and IB. Only two or three putative transmembrane segments could be selected in the sequences of colicin A, IB or E1. As a result, it is concluded that the channel is probably not built by a single colicin molecule but more likely by an oligomer.  相似文献   

19.
The simple and simultaneous purification of histidine-rich glycoprotein (HRG) and antithrombin III (AT III) from human plasma and gross structural characterization of HRG have been performed. The purification method consists of two chromatographic procedures using heparin-agarose and DEAE-Sephadex. The yields of HRG and AT III were 22 mg and 70 mg, respectively, from 1 liter of plasma. The purified HRG is a single-chain polypeptide with a molecular weight (Mr) of 75,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, indicating it was the native form of this protein. Cyanogen bromide cleavage of HRG, followed by analysis of the amino acid composition and determination of the amino-terminal sequence of each purified cyanogen bromide fragment established that the gross structure of HRG consisted of three cyanogen bromide fragments; an amino-terminal CN-50 kDa fragment (Mr 50,000) and a carboxy-terminal small fragment of eight amino acids, and a CN-30 kDa fragment (Mr 30,000) between them. As to the amino acid composition of the CN-30 kDa fragment, it had an unusually high content of histidine (25 mol%), suggesting the presence of a histidine-rich region(s) in the carboxy-terminal half of the molecule. These results together with our previous results (Koide, T., Odani, S., & Ono, T. (1982) FEBS Lett. 141, 222-224) and those of Morgan (Morgan, W.T. (1985) Biochemistry 24, 1496-1501) imply that HRG is composed of at least two domains with distinct functional properties; i.e. an amino-terminal domain with heparin-binding ability and a carboxy-terminal domain with heme- and divalent metal-binding abilities.  相似文献   

20.
Using the M13 dideoxy sequencing technique, we have established the DNA sequences of colicins E2 and E3 which encompass the receptor-binding and the catalytic domains of each of the nucleases, and their immunity (imm) genes. The imm gene of plasmid ColE2-P9 is 255 bp long and is separated from the end of the col gene by a dinucleotide. This gene pair is arranged similarly in plasmid ColE3-CA38 except that the intergenic space is 9 bp and the E3 imm gene is one codon shorter than its E2 counterpart. Comparisons of the E2 and E3 imm sequences indicate considerable divergence whereas the receptor-binding domains of both colicins are highly conserved. The two nuclease domains appear to share some sequence homology. A possible evolutionary relationship between colicin E3 and other microbial extracellular ribonucleases is also suggested from the sequence alignment analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号