共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences (<1 J/m2, producing less than one pyrimidine dimer per replicon) rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates without noticeably affecting synthesis in multi-repliconsize intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher (>1 J/m2, producing more than one dimer per replicon) cytotoxic fluences inhibited DNA synthesis in operating replicons presumably because the elongation of nascent strands was blocked where pyrimidine dimers were present in template strands. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences. indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation than the repair-deficient strains despite their ability to remove pyrimidine dimers. This analysis suggests that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery. 相似文献
2.
Two DNA endonuclease activities from normal human and xeroderma pigmentosum chromatin active on psoralen plus ultraviolet light treated DNA 总被引:5,自引:0,他引:5
DNA endonuclease activities from the chromatin of normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells were examined on DNA treated with 8-methoxypsoralen (8-MOP) or 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light, which produce monoadducts and DNA interstrand cross-links, and angelicin plus UVA light, which produces mainly monoadducts. 9 chromatin-associated DNA endonuclease activities were isolated from normal and XPA cells and assayed for activity on PM2 bacteriophage DNA that had been treated with 8-MOP or TMP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given. Cross-linking of DNA molecules was confirmed by alkaline gel electrophoresis. In both normal and XPA cells, two DNA endonuclease activities were found which were active on 8-MOP and TMP plus UVA light treated DNA. One of these endonuclease activities, pI 4.6, is also active on intercalated DNA and a second one, pI 7.6, is also active on UVC (254 nm) light irradiated DNA. The major activity against angelicin plus UVA light treated DNA in both normal and XPA cells was found in the fraction, pI 7.6. The levels of activity of both of these fractions on all 3 psoralen-damaged DNAs were similar between normal and XPA cells. These results indicate that in both normal and XPA cells there are at least two different DNA endonucleases which act on both 8-MOP and TMP plus UVA light treated DNA. 相似文献
3.
Resistance of plateau-phase human normal and xeroderma pigmentosum fibroblasts to the cytotoxic effect of ultraviolet light 总被引:3,自引:0,他引:3
Clonogenic survival response to 254-nm ultraviolet light was measured in 2 strains of repair-proficient normal human fibroblasts and 4 strains of xeroderma pigmentosum (XP) fibroblasts belonging to complementation groups A, C, D and variant. In all strains except XPA, cells irradiated in plateau phase and subcultured immediately were much more resistant to the lethal effect of UV than cells irradiated in the exponential phase of growth. Typically, 10-20% of plateau-phase cells were extremely resistant. When the cultures were held in plateau phase for 24 h after irradiation and before subculture, there was a further enhance of survival. By use of a UV-specific endonuclease assay, no difference was found in the number of DNA lesions induced in exponentially growing and plateau cultures by the same dose of UV light. Thus plateau-phase cells appear to be more efficient in their DNA-repair capability than cells in exponential growth. XP group A cells were uniquely found to be deficient in the processes which lead to plateau-phase resistance. Since plateau-phase repair was not lacking in XP groups C, D and variant, it may be related to a DNA-repair process different from that which is responsible for the overall UV sensitivity of these cells. 相似文献
4.
DNA-protein cross-linking by ultraviolet radiation was measured in human fibroblasts by an adaptation of the method of DNA alkaline elution. To measure cross-linking, a controlled frequency of DNA single-strand breaks was introduced by exposing the cells to a low dose of X-ray at 0 degrees C prior to analysis by alkaline elution. The effect of prior exposure of the cells to ultraviolet radiation was to reduce the rate and/or extent of DNA elution from X-irradiated cells. This effect was attributed to DNA-protein cross-linking, since the effect was reversed by treatment of the cell lysates with proteinase-K. Cross-linking in normal human fibroblasts occurred immediately after ultraviolet irradiation, prior to the appearance of DNA single-strand breaks due to excision repair. Upon incubation of normal cells after exposure, to ultraviolet radiation, the cross-linking was partially repaired. In xeroderma pigmentosum cells, cross-links appeared as in normal cells, but there was no repair. Instead, the extent of cross-linking appeared to increase upon incubation after ultraviolet irradiation. 相似文献
5.
Size and frequency of gaps in newly synthesized DNA of xeroderma pigmentosum human cells irradiated with ultraviolet light 总被引:2,自引:0,他引:2 下载免费PDF全文
Native newly synthesized DNA from human cells (xeroderma pigmentosum type) irradiated with ultraviolet light releases short pieces of DNA (L-DNA) when incubated with the single-strand specific S1 nuclease. This is not observed in the case of unirradiated cells. Previous experiments had shown that the L-DNA resulted from the action of S1 nuclease upon gaps, i.e., single-stranded DNA discontinuities in larger pieces of double-stranded DNA. We verified that the duplex L-DNA, that arises from the inter-gap regions upon S1 nuclease treatment, has a size which approximates the distance between two pyrimidine dimers on the same strand; this has been observed at different fluences of ultraviolet-light and indicates that the gap is related to or opposite the dimer. A method was devised to measure the size of the gaps. A Poisson distribution analysis of the percentage of the L-DNA produced as a function of S1 nuclease concentration made this possible. 65% of the gaps corresponded to stretches of 1,250 nucleotides and 35% to stretches of 150 nucleotides. These parameters have been considered in the proposition of a model for DNA synthesis on a template containing pyrimidine dimers. 相似文献
6.
7.
Effects of inhibitors on repair of DNA in normal human and xeroderma pigmentosum cells after exposure to x-rays and ultraviolet irradiation 总被引:5,自引:0,他引:5
Experiments were carried out to obtain direct evidence for the hypothesis that in human cells the repair of UV-damaged DNA is initiated by an incision step, and that this step is defective in cells from patients having Xeroderma pigmentosum (XP). The alkaline sucrose gradient centrifugation technique was used to detect breaks in the DNA.A decreased sedimentation velocity of the DNA was found after exposure of normal and XP cells to high doses of UV (5000 erg/mm2). Breaks were induced in the DNA by the UV irradiation without the action of an enzyme. After exposure of both types of cell to UV doses of 100–500 erg/mm2, breaks that might occur by enzymic incision were not observed, possibly because of immediate rejoining.After single-strand breaks had been induced by X-rays, rejoining did not occur at temperatures lower than 22°. Rejoining was inhibited by KCN, 2,4-dinitrophenol, EDTA, iodoacetate and crystal violet. Actinomycin D, acriflavine and phleomycin, also tested as potential inhibitors of the repair process, induced breaks or conformational changes in the DNA of unirradiated normal and XP cells.Application to UV-exposed cells of conditions that inhibit the rejoining of breaks did not cause accumulation of breaks in the DNA. The results suggest a coordinated and sequential performance of the steps in the repair of each UV lesion by repair enzymes which may act as a complex. 相似文献
8.
《Mutation research》1977,43(2):279-290
We have used a T4 endonuclease V assay method for UV-induced pryrimidine dimers in cellular DNA in vivo to obtain evidence for recombinational DNA exchanges after UV irradiation of normal human and Xeroderma pigmentosum (XP) cells. Our data indicate that the endonuclease-sensitive sites in excision-defective XP cells are removed very slowly from the irradiated parental strands and appear concomitantly in daughter strands newly synthesized during post-UV incubation. In the defective XP cells, the extent of appearance of sensitive sites in daughter strands synthesized during a period of 24 h after 10 J/m2 appears to be small, probably less than 15% of the initial number of sensitive sites detected in cellular parental strands. Demonstration of such exchanges between normal-density parental and 5-bromodeoxyuridine-labeled daughter strands by alkaline CsCl isopycnic centrifugation was unsuccessful. Further, the extent is much lower in normal human cell because of their efficiet excision repair of the dimers before and after exchanges than in the defective XP cells. 相似文献
9.
Cells from patients with xeroderma pigmentosum, complementation group A (XPA), are known to be defective in repair of pyrimidine dimers and other forms of damage produced by 254-nm ultraviolet (UVC) radiation. We have isolated a DNA endonuclease, pI 7.6, from the chromatin of normal human lymphoblastoid cells which recognizes damage produced by UVC light, and have introduced this endonuclease into UVC-irradiated XPA cells in culture to determine whether it can restore their markedly deficient DNA repair-related unscheduled DNA synthesis (UDS). Introduction of the normal endonuclease, which recognizes predominantly pyrimidine dimers, but not the corresponding XPA endonuclease into UVC-irradiated XPA cells restored their levels of UDS to approximately 80% of normal values. Electroporation of both the normal and the XPA endonuclease into normal human cells increases UDS in normal cells to higher than normal values. These results indicate that the normal endonuclease can restore UDS in UVC-irradiated XPA cells. They also indicate that XPA cells have an endonuclease capable of increasing the efficiency of repair of UVC damage in normal cells. 相似文献
10.
11.
Induction of sister chromatid exchanges in xeroderma pigmentosum cells after exposure to ultraviolet light 总被引:6,自引:0,他引:6
The role of DNA repair mechanisms in the induction of sister chromatid exchanges (SCE) after exposure to ultraviolet radiation was investigated in xeroderma pigmentosum cells. Cells from different excision-deficient XP strains, representing the 5 complementation groups in XP, A, B, C, D and E, and from excision-proficient XP variant strains were irradiated with low doses of UVR (0-3.5 J/m2). The number of SCE was counted after two cycles in the presence of BUdR. In cells of the complementation groups A, B, C and D the number of SCE was significantly higher than in UV-exposed control cells. The frequencies of SCE in group E cells and in XP varient cells were not different from those in control cells. Treatment with caffeine (0-200 microgram/ml) did not result in a different response of variant cells compared with normal cells. A simple correlation between SCE frequency and residual excision-repair activity was not observed. The response of the excision-repair deficient cells suggest that unrepaired damage, produced by UVR is involved in the production of SCE. 相似文献
12.
J E Cleaver 《Biochimica et biophysica acta》1979,565(2):387-390
Excision repair of damage from ultraviolet light in both normal and xeroderma pigmentosum variant fibroblasts at early times after irradiation occurred preferentially in regions of DNA accessible to micrococcal nuclease digestion. These regions are predominantly the linker regions between nucleosomes in chromatin. The alterations reported at polymerization and ligation steps of excision repair in the variant are therefore not associated with changes in the relative distributions of repair sites in linker and core particle regions of DNA. 相似文献
13.
14.
J E Cleaver 《Radiation research》1988,116(2):245-253
The proximity of repair patches to persistent pyrimidine dimers in normal human cells and xeroderma pigmentosum group C and D cells was analyzed by sequential digestion of repaired DNA with Micrococcus luteus UV-endonuclease and Escherichia coli DNA polymerase I. Although this enzymatic digestion removed one-third of the pyrimidine dimers, less than 3% of the label associated with repair patches and a similar amount of uniformly labeled DNA were removed. The repair patches therefore appear to be similarly distant from persistent dimers in all cell types, and, in particular, are not adjacent to unexcised dimers in xeroderma pigmentosum group D cells. A previous model that suggested that patches are inserted adjacent to dimers in xeroderma pigmentosum group D cells receives no support from these results. 相似文献
15.
Photoreactivation of pyrimidine dimers in the DNA of normal and xeroderma pigmentosum cells. 总被引:4,自引:0,他引:4
Photoproducts formed in the DNA of human cells irradiated with ultraviolet light (uv) were identified as cyclobuytl pyrimidine dimers by their chromatographic mobility, reversibility to monomers upon short wavelength uv irradiation, and comparison of the kinetics of this monomerization with that of authentic cis-syn thymine-thymine dimers prepared by irradiation of thymine in ice. The level of cellular photoreactivation of these dimers reflects the level of photoreactivating enzyme measured in cell extracts. Action spectra for cellular dimer photoreactivation in the xeroderma pigmentosum line XP12BE agree in range (300 nm to at least 577 nm) and maximum (near 400 nm) with that for photoreactivation by purified human photoreactivating enzyme. Normal human cells can also photoreactivate dimers in their DNA. The action spectrum for the cellular monomerization of dimers is similar to that for photoreactivation by the photoreactivating enzyme in extracts of normal human fibroblasts. 相似文献
16.
In normal human fibroblasts we observe an enhancement of the recovery of the rate of semi-conservative DNA synthesis after split-dose UV-irradiation relative to a single total UV dose. The enhanced recovery is totally absent in both a xeroderma pigmentosum variant line and two xeroderma pigmentosum lines belonging to complementation groups A and C. 相似文献
17.
18.
We have measured by alkaline elution and alkaline sedimentation the rate of rejoining of X-ray induced DNA single-strand breaks in terminally senescent cultured WI-38 cells. Using the alkaline elution method, we have also measured the rate of ligation in cultured progeroid cells. In both cells and by both methods of measurement the rates of strand rejoining were normal. Alkaline elution failed to disclose any DNA crosslinking in these cells. 相似文献
19.
Kenneth H. Kraemer Joseph K. Buchanan Sherman F. Stinson 《In vitro cellular & developmental biology. Plant》1980,16(7):609-615
Summary Assessment of DNA repair in cultured human fibroblasts by autoradiography may be facilitated by using semiautomated grain
counting instruments. The instrument-determined number of autoradiographic grains per nucleus in cultured human skin fibroblasts
was found to be linear in comparison to visual counts up to only 30 grains per nucleus. However, with two different instruments
a greater range of linearity (to 100 to 120 grains per nucleus) was attained by measuring the grain surface area per nucleus.
Semiautomated analysis of the grain surface area per nucleus yielded measurements of relative rates of unscheduled DNA synthesis
after ultraviolet irradiation in xeroderma pigmentosum and normal human fibroblasts, which were reproducible and rapid. 相似文献
20.
Levels of DNA polymerase-alpha and beta in normal and xeroderma pigmentosum fibroblasts. 总被引:5,自引:3,他引:2 下载免费PDF全文
We have determined the levels of DNA-polymerases-alpha and-beta in fibroblasts obtained from normal subjects and from patients with Xeroderma Pigmentosum (XP) belonging to three different complementation groups and to the variant form. The assays have been performed in crude extracts and after fractionation on sucrose gradients. The levels of alpha and beta-polymerases in the different cases of XP were found to lie within the same range as the control values, and no correlation was found with the severity of the symptoms. The sedimentation coefficients of the two polymerases from all the pathological lines were identical to those of the normal fibroblasts. 相似文献