首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variation in the DNA distribution in the JB-1 and the Lla2 ascites tumour was investigated by means of flow microfluorometry (FMF) in the plateau stage and during the initiation of the regeneratave growth induced by percutaneous aspiration. The study showed that a considerable influx of cells with G1 DNA content into the S phase occurred in both tumours about 10 hr after aspiration. In the JB-1 tumour, these initial regenerative changes could be reversibly blocked by injections of cell-free plateau JB-1 ascitic fluid or an ultrafiltrate of this ascites. In contrast to these observations no delay in the regenerative changes was observed in the Lla2 tumour after treatment with JB-1 ascites or the ultrafiltrate. The study supports the assumption of a specific growth regulation of the JB-1 ascites tumour and emphasizes the suitability of FMF analyses in cell-kinetic studies in which short-term fluctuations take place in the distribution of cells with different DNA content.  相似文献   

2.
In most experimental ascites tumours the growth rate decreases with increasing age and cell number. This decrease is caused by a prolongation of the cell cycle and an increasing accumulation of non-cycling cells in resting (or quiescent) G1 and G2 compartments. In cell-free ascitic fluid from the JB-1 ascites tumour in the plateau phase of growth lowmolecular-weight substances have been found which reversibly and specifically arrest JB-1 cells in G1 and G2. The present paper describes an in-vitro model for testing the effect of the humoral growth inhibitors contained in the ascitic fluid. The test system is based on synchronized JB-1 cells analysed by flow-through cytofluorometry. Addition to the synchronous cells of a ultrafiltrate (less than 50000 Daltons) of the JB-1 ascitic fluid was found to induce a complete, but temporary arrest of the cells at the G1-S border.  相似文献   

3.
The cell kinetics of recurrent growth of the murine JB-1 ascites tumour have been investigated 0 hr and 24 hr after aspiration of the main part of the tumour in the plateau phase of growth. The experimental data: growth curve, percentage of labelled mitoses curve and continuous labelling curves combined with cytophotometric determination of single-cell DNA content were analysed using two alternative mathematical models for the cell kinetics. Investigations 24 hr after aspiration showed that the doubling time had decreased to 70 hr as compared with 240 hr in the plateau tumour. This was due to a release of non-proliferating cells into the cell cycle, resulting in an increase in the growth fraction from 44% to 72%. The decrease in the doubling time was also due to a shortening of the mean cell cycle time from 41 to 20.5 hr. The analysis rendered it likely that the aspiration caused a shift in the mode of cell loss from an age-specific elimination of old non-cycling cells with post-mitotic DNA content in the plateau tumour to an elimination of younger cells immediately after mitosis. Investigations from 0 to 10 hr after aspiration verified the release of non-proliferating cells with both G1 and G2 DNA content into the cell cycle. The release was initiated from 3 to 6 hr after aspiration. 24 hr after aspiration the experimental data did not indicate any further transition.  相似文献   

4.
Resting cells in tumours present a major problem in cancer chemotherapy. In the plateau phase of grwoth of the murine JB-1 ascites tumour (i.e. 10 days after 2-5 X 10(6) cells i.p.) large fractions of non-cycling cells with G1 and G2 DNA content (Q1 and Q2 cells) are present, and the fate of these resting cells was investigated after treatment with 1-beta-D-arabinofuranosylcytosine (Ara-C).The experimental work of growth curves, percentage of labelled mitoses curves after continuous labelling with 3H-TdR, and cytophotometric determination of single-cell DNA content in unlabelled tumour cells. Treatment with an i.p. single injection of Ara-C 200 mg/kg in the plateau JB-1 tumour resulted in a significant reduction in the number of tumour cells 1 and 2 days later as compared with untreated controls, while no difference in the number of tumour cells was observed after 3 days. In tumours prelabelled with 3H-TdR 24 hr before Ara-C treatment, a significant decrease in the percentage of labelled mitoses was observed 6-8 hr later followed by a return to the initial value after 12 hr, and a new pronounced fall from 20 hr after Ara-C. The second fall in the percentage of labelled mitoses disappeared when the labelling with 3H-TdR was continued also after Ara-C treatment. Cytophotometry of unlabelled tumour cells prelabelled for 24 hr with 3H-TdR before Ara-C treatment showed 20 hr after Ara-C a pronounced decrease in the fraction of Q1 cells paralleled by an increase in the fraction of unlabelled cells with S DNA content. The results indicate recycling of resting cells first with G2 and later with G1 DNA content, which contribute to the regrowth of the tumours.  相似文献   

5.
Cytophotometric determination of single-cell DNA after repeated 3H-thymidine labelling of the JB-1 ascites tumour in the plateau phase of growth showed a massive accumulation of unlabelled cells with both G1 and G2 content. Autoradiography combined with cytophotometry or colcemid block demonstrated that some of these unlabelled cells were rapidly triggered into the cell cycle when plateau tumours were transferred to new hosts. This indicated that tumour cells may be held up in non-cycling stages corresponding to both the G1 and the G2 phase of the cell cycle.  相似文献   

6.
A flow cytometric in vivo chalone assay is described. Transplantation of old JB-1 ascites tumour cells to new hosts induced an influx of tumour cells, with G1 DNA content, to the S phase. This induction could be reversibly and specifically blocked by injections of an ultrafiltrate of old JB-1 ascites fluid. The method described is superior to a previously published in vivo chalone assay using regenerating ascites tumours. Owing to a reduced variability in time of onset of DNA synthesis, a smaller scatter of observations is achieved and thus the number of mice per group may be reduced using the new method. In contrast to the older technique, the present one does not necessitate killing of mice during the observation period.  相似文献   

7.
Resting cells in tumours present a major problem in cancer chemotherapy. In the plateau phase of growth of the murine JB-1 ascites tumour (i.e. 10 days after 2–5 × 106 cells i.p.) large fractions of non-cycling cells with G1 and G2 DNA content (Q1 and Q2 cells) are present, and the fate of these resting cells was investigated after treatment with l-β-d-arabinofuranosylcytosine (Ara-C). The experimental work consisted of growth curves, percentage of labelled mitoses curves after continuous labelling with 3H-TdR, and cytophotometric determination of single-cell DNA content in unlabelled tumour cells. Treatment with an i.p. single injection of Ara-C 200 mg/kg in the plateau JB-1 tumour resulted in a significant reduction in the number of tumour cells 1 and 2 days later as compared with untreated controls, while no difference in the number of tumour cells was observed after 3 days. In tumours prelabelled with 3H-TdR 24 hr before Ara-C treatment, a significant decrease in the percentage of labelled mitoses was observed 6–8 hr later followed by a return to the initial value after 12 hr, and a new pronounced fall from 20 hr after Ara-C. The second fall in the percentage of labelled mitoses disappeared when the labelling with 3H-TdR was continued also after Ara-C treatment. Cytophotometry of unlabelled tumour cells prelabelled for 24 hr with 3H-TdR before Ara-C treatment showed 20 hr after Ara-C a pronounced decrease in the fraction of Qt cells paralleled by an increase in the fraction of unlabelled cells with S DNA content. These results indicate recycling of resting cells first with G2 and later with Gx DNA content, which contribute to the regrowth of the tumours.  相似文献   

8.
In cell-free mouse ascites fluid from the JB-1 ascites tumor in the plateau phase of growth low-molecular chalone substances have been found which reversibly and specifically arrest JB-1 cells in the G1 and G2 phase of the cell cycle. The aim of this study was to investigate whether chalones were involved in the regulation of in vitro growth of JB-1 tumor cells. Used medium and cell extract from confluent, stationary JB-1 cell cultures were investigated for proliferation-inhibitory properties. JB-1 cells from stationary cultures were explanted in test cultures and the traverse of cells through the S phase was investigated by means of flow cytometry (FCM). Inhibition--expressed as a delay of the traverse of cells through the S phase--was not observed when a surplus of used medium, concentrated and fractionated used medium or concentrated and fractionated cell extract from JB-1 cells in vitro was added to test cultures. On the contrary, used medium and concentrated and fractionated used medium stimulated growth. Thus, no involvement of chalones in the growth regulation of JB-1 tumor cells in vitro was detected.  相似文献   

9.
A method was developed to analyse and characterize FMF measurements of DNA content distribution, utilizing the discrete time kinetic (DTK) model for cell kinetics analysis. The DTK model determines the time sequence of the cell age distribution during the proliferation of a tumor cell population and simulates the distribution pattern of the DNA content of cells in each age compartment of the cell cycle. The cells in one age compartment are distributed and spread into several compartments of the DNA content distribution to allow for different rates of DNA synthesis and instrument dispersion effects. It is assumed that the DNA content of cells in each age compartment has a Gaussian distribution. Thus, for a given cell age distribution the DNA content distribution depends on two parameters of the cells in each age compartment: the average DNA content and its coefficient of variation. As the DTK model generates the best fit DNA content distribution to the FMF measurement data, it enables one to estimate specific values of these two parameters in each stage of the cell cycle and to determine the fraction of cells in each cycle phase. The method was utilized to fit FMF measurements of DNA content distributions and to analyse their relationship to the cell kinetic parameters, namely cell loss rate, cell cycle times and growth fraction of exponentially growing Chinese hamster ovary cells in vitro and, also, with a wide range of coefficients of variation, of the L1210 ascites tumour during the growth period.  相似文献   

10.
Tumour cell recruitment of the JB-1 and L 1210 ascites tumour has been demonstrated directly by a double-labelling method with [14C]- and [3H]-thymidine (TdR). After [14C]-labelling of all proliferating tumour cells by multiple injections of [14C]TdR, recruitment of resting cells was stimulated by removal of the majority of tumour cells, i.e. by maximum aspiration of ascitic fluid. The number of recruited resting cells in the remaining tumour that re-enter the cell cycle after stimulation was demonstrated directly by a single injection of [3H]TdR given at different times after stimulation. The increase in the percentage of purely [3H]-labelled cells, i.e. recruited cells, with increasing time after stimulation, shows that recruitment is not a synchronous but a continuous process, the maximum of which occurs earlier in the case of the L 1210 than the JB-1 tumour. This suggests that there seems to be a relationship between the time required for maximum recruitment and the corresponding cell cycle parameters of the unperturbed tumour. There is a transitory increase of the growth fraction to about 100% and a considerable shortening of the cycle time at the maximum of recruitment.  相似文献   

11.
A method was developed to analyse and characterize FMF measurements of DNA content distribution, utilizing the discrete time kinetic (DTK) model for cell kinetics analysis. The DTK model determines the time sequence of the cell age distribution during the proliferation of a tumor cell population and simulates the distribution pattern of the DNA content of cells in each age compartment of the cell cycle. The cells in one age compartment are distributed and spread into several compartments of the DNA content distribution to allow for different rates of DNA synthesis and instrument dispersion effects. It is assumed that the DNA content of cells in each age compartment has a Gaussian distribution. Thus, for a given cell age distribution the DNA content distribution depends on two parameters of the cells in each age compartment: the average DNA content and its coefficient of variation. As the DTK model generates the best fit DNA content distribution to the FMF measurement data, it enables one to estimate specific values of these two parameters in each stage of the cell cycle and to determine the fraction of cells in each cycle phase. The method was utilized to fit FMf measurements of DNA content distributions and to analyse their relationship tothe cell kinetic parameters, namely cell loss rate, cell cycle times and grwoth graction of exponentially growing Chinese hamster ovary cells in vitro and, also, with a wide range of coeffficients of variation, of the L1210 ascites tumour during the growth period.  相似文献   

12.
Abstract. Tumour cell recruitment of the JB-1 and L 1210 ascites tumour has been demonstrated directly by a double-labelling method with [14C]- and [3H]-thymidine (TdR). After [14C]-labelling of all proliferating tumour cells by multiple injections of [14C]TdR, recruitment of resting cells was stimulated by removal of the majority of tumour cells, i.e. by maximum aspiration of ascitic fluid. the number of recruited resting cells in the remaining tumour that re-enter the cell cycle after stimulation was demonstrated directly by a single injection of [3H]TdR given at different times after stimulation. the increase in the percentage of purely [3H]-labelled cells, i.e. recruited cells, with increasing time after stimulation, shows that recruitment is not a synchronous but a continuous process, the maximum of which occurs earlier in the case of the L 1210 than the JB-1 tumour. This suggests that there seems to be a relationship between the time required for maximum recruitment and the corresponding cell cycle parameters of the unperturbed tumour. There is a transitory increase of the growth fraction to about 100% and a considerable shortening of the cycle time at the maximum of recruitment.  相似文献   

13.
An aqueous ultrafiltrate (10 000-50 000 dalton) prepared from the cell-free ascitic fluid of mice bearing Ehrlich ascites tumour (EAT) in the plateau phase of growth (12-16 days after transplantation) was investigated with regard to its inhibitory effects on the proliferation of EAT cells in a 24-hr suspension culture. The following results were obtained: (1) The in vitro proliferation of cells obtained from the plateau phase of in vivo growth was reversibly inhibited. (2) The dose-response curves show a plateau with a maximum inhibition of about 50%, which suggests that not all cells can be affected. (3) Young cells (4-6 days after transplantation) were not inhibited. (4) Preincubation of plateau phase cells in the culture medium before treatment abolishes the inhibitory effect of the ultrafiltrate. This effect of preincubation is dependent on time and serum concentration. It provides the possibility to differentiate between true "chalone-like" and cytotoxic effects. (5) the inhibitory properties of the ultrafiltrate are destroyed by heating or trypsin treatment. (6) Extracts prepared in the same way from ascitic fluid of mice bearing lymphocytic leukemia L1210 do not inhibit the proliferation of EAT cells. Corresponding extracts from ascitic fluid of mice bearing myelocytic leukemia YM were found to be inhibitory; however, the inhibitory effect was also found on preincubated cells and is therefore considered to be due to an unspecific cytotoxicity. In conclusion, evidence was obtained for a factor from the ascitic fluid of mice bearing EAT, which prevents EAT cells from entering the proliferating state.  相似文献   

14.
Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined. Four isoenzymes at pI 4.1, 5.3, 6.9 and 8.3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pI 8.3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other. All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

15.
The cell kinetics of the murine JB-1 ascites tumour have been investigated on days 4, 7 and 10 after transplantation of 2·5 × 106 cells. The experimental data, growth curve, percentage of labelled mitoses curves, continuous labelling curves and cytophotometric determination of single-cell DNA content have been analysed by means of a mathematical model for the cell kinetics. The important result was the existence of 8% non-cycling cells with G2 DNA content in the 10-day tumour, while only 0·2 and 0% were observed in the 7- and 4-day tumours, respectively. The doubling times determined from the growth curve were 22·8, 70 and 240 hr, respectively, in the 4-, 7- and 10-day tumours. Growth fractions of 76, 67 and 44% were calculated for the same tumour ages. The mean cell cycle time increased from 14 to 44 hr from day 4 to 7 due to a proportional increase in the mean transit time of all phases in the cell cycle. In the 10-day tumour, the mean cell cycle changed to 41 hr and T G1 decreased to 0·5 hr. The cell production rate was 4·3%/hr in the 4-day tumour, 1·2%/hr in the 7-day tumour and 1·0%/hr in the 10-day tumour. The cell loss rates in the same tumours were 1·3, 0·2 and 0·7%/hr, respectively. The analysis made it probable that the mode of cell loss was an age-specific elimination of non-cycling cells with postmitotic DNA content.  相似文献   

16.
Ehrlich ascites tumor cells from the plateau phase of growth were transplanted into new hosts, pulse-labeled with tritiated thymidine and blocked with repeated injections of vinblastine. When unlabeled cells were analyzed for their cellular DNA content utilizing a cytophotometric technique it was found that in relation to the total number of cells (labeled plus unlabeled), 13% had a 2C DNA content, 36% a 4C DNA content and 5% an 8C DNA content at 0.5 hours after transplantation. By 24 hours the distributions changed dramatically: the initially unlabeled 2C cells were now 4C, the 36% of the cells that were initially 4C partitioned into 24% that were still 4C and 12% that progressed to 8C, and the initial 8C cells remained 8C. These studies indicate that the accumulation of 4C cells during the plateau phase of growth is due to a combination of G2 diploid and G1 tetraploid cells.  相似文献   

17.
Abstract. Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined.
Four isoenzymes at pi 41, 5-3, 6–9 and 8-3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pi 8-3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other.
All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

18.
Clonal strains of rat pituitary tumour cells (GH3 cells) spontaneously produce and secrete prolactin and growth hormone. Chromosome analysis and DNA ploidy measurements revealed that the GH3 cells in the present study were triploid and had a decreased chromosome number compared to the parent strain. Monolayer cultures of these cells grow exponentially for 6-7 days with a mean doubling time of 54 h. Cell cycle distributions and phase durations were determined by micro-flow fluorometric measurements of cellular DNA content combined with computer calculations. During exponential growth the cell cycle distribution did not change (65.4% cells with a G1 phase DNA content, 24.9% with an S phase DNA content, and 9.7% with a (G2 + M) phase DNA content). Counting of mitoses gave 1.4% cells in M phase. The 3H-Tdr labeling indices were determined by autoradiography, and the results were in good agreement with the number of cells in S phase as calculated by micro-flow fluorometry. The phase durations were: Ts=15.9 h, TG2=6.2 h, TM=1.1 h, and TG1=30.9 h. TS and TM calculated from 3H-Tdr labeled and Colcemid treated cultures gave corresponding results. In plateau phase cultures the number of cells with a G1 DNA content increased to 80% and the number of cells with an S phase DNA content decreased to between 5% and 10%. The specific production of prolactin and growth hormone determined by radioimmunoassay showed two and four-fold increases respectively, during exponential growth. The hormone values decreased to initial or subinitial values (day 2 values) when approaching plateau phase. We conclude: that changes in the cell cycle distribution of the cell population cannot be responsible for the spontaneous alterations in hormone production during growth and that most of the hormone-producing cells must be in the G1 phase.  相似文献   

19.
A one-step procedure for the preparation of nuclei for flow microfluorometric DNA analysis is described. The membranes of the cells were lysed by the non-ionic detergent Nonidet P40. Single-cell suspensions, and specimens of solid tissues obtained with fine-needle biopsy, could be prepared equally well as the nuclei of solid tissue cells were released separately. Lysis was performed in the staining solution containing either ethidium bromide or propidium iodide. Fluorescence due to fluorochrome binding to RNA, was abolished instantaneously by the presence of RNA-se, and fluorochrome binding to secondary binding sites in DNA was inhibited with NaCl. The preparation time was 10 min and the samples were stable for a minimum of 12 h. With the basic version of the method, usable, but not always optimal, results were obtained in all the cell types tested: four different mouse ascites tumors, leucocytes, bone-marrow, liver cells, human lymphomas, human carcinomas of the breast and lung, mouse mammary carcinoma and solid JB-1 tumor. The method was further optimized for the JB-1 ascites tumour. The resulting two modified techniques are described. Differences in the staining of leucocytes with the analogues ethidium bromide and propidium iodide were demonstrated.  相似文献   

20.
Abstract. Glucose is normally required as the energy source and for the proliferation of neoplastic cells. For Ehrlich ascites tumour cells, kept under glucose-free culture conditions, this requirement was alleviated by uridine, indicating that the supply of ribose is obligatory for sustaining growth capacity.
In a 96-hr culture experiment with mouse-derived cells, the increase in cell number from cultures supplemented with 5 mM uridine was 50–70%, whilst lactate production was 5% that of controls. An increase in the number of multinucleate cells was observed from cell-smears; DNA histograms indicated the presence of cells with a DNA content higher than 4c and an increased portion of cells in G2 phase. For precise determination of changes in cell cycle distribution on transfer of cells from glucose-supplemented to glucose-free conditions, the progression of phase-accumulated cells (by centrifugal elutriation) was monitored by DNA distribution analysis; G2 cells continued the cycle at a rate comparable to controls but were delayed, in the following cycle, predominantly in S and G2 phases. This was also observed with G1 cells from a G1-accumulated fraction in the first cycle.
The addition of glucose to cells kept for some hours in glucose-free, uridine-supplemented medium resulted in an immediate increase in mitotic index (amplification by the colcemid method).
The results are interpreted and support our concept that the delivery of compounds, necessary for normal growth, i.e. hexoses for glycoproteins and glycolipids, are limited as a consequence of the 'metabolic channelling' of pentose from uridine in Ehrlich ascites tumour cells. Therefore, the constantly lowered growth-rate in uridine-supplemented cells observed with long-term culture experiments could reflect an adaption of growth-cycle to these limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号