首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Existing bacterial artificial chromosome (BAC) vectors were modified to have unique EcoRI cloning sites. This provided an additional site for generating representative libraries from genomic DNA digested with a variety of enzymes. A BAC library of lettuce was constructed following the partial digestion of genomic DNA with HindIII or EcoRI. Several experimental parameters were investigated and optimized. The BAC library of over 50,000 clones, representing one to two genome equivalents, was constructed from six ligations; average insert sizes for each ligation varied between 92.5 and 142 kb with a combined average insert size of 111 kb. The library was screened with markers linked to disease resistance genes; this identified 134 BAC clones from four regions containing resistance genes. Hybridization with low-copy genomic sequences linked to resistance genes detected fewer clones than expected from previous estimates of genome size. The lack of hybridization to chloroplast and mitochondrial sequences demonstrated that the library was predominantly composed of nuclear DNA. The unique EcoRI site in the BAC vector should allow the integration of BAC cloning with other technologies that utilize EcoRI digestion, such as AFLPTM markers and RecA-assisted restriction endonuclease (RARE) cleavage, to clone specific large EcoRI fragments from genomic DNA. Received: 5 August 1996 / Accepted: 23 August 1996  相似文献   

2.
A "gene-island" sequencing strategy has been developed that expedites the targeted acquisition of orthologous gene sequences from related species for comparative genome analysis. A 152-kb bacterial artificial chromosome (BAC) clone from sorghum (Sorghum bicolor) encoding phytochrome A (PHYA) was fully sequenced, revealing 16 open reading frames with a gene density similar to many regions of the rice (Oryza sativa) genome. The sequences of genes in the orthologous region of the maize (Zea mays) and rice genomes were obtained using the gene-island sequencing method. BAC clones containing the orthologous maize and rice PHYA genes were identified, sheared, subcloned, and probed with the sorghum PHYA-containing BAC DNA. Sequence analysis revealed that approximately 75% of the cross-hybridizing subclones contained sequences orthologous to those within the sorghum PHYA BAC and less than 25% contained repetitive and/or BAC vector DNA sequences. The complete sequence of four genes, including up to 1 kb of their promoter regions, was identified in the maize PHYA BAC. Nine orthologous gene sequences were identified in the rice PHYA BAC. Sequence comparison of the orthologous sorghum and maize genes aided in the identification of exons and conserved regulatory sequences flanking each open reading frame. Within genomic regions where micro-colinearity of genes is absolutely conserved, gene-island sequencing is a particularly useful tool for comparative analysis of genomes between related species.  相似文献   

3.
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.  相似文献   

4.
Complementary BAC and BIBAC libraries were constructed from nuclear DNA of sunflower cultivar HA 89. The BAC library, constructed with BamHI in the pECBAC1 vector, contains 107,136 clones and has an average insert size of 140 kb. The BIBAC library was constructed with HindIII in the plant-transformation-competent binary vector pCLD04541 and contains 84,864 clones, with an average insert size of 137 kb. The two libraries combined contain 192,000 clones and are equivalent to approximately 8.9 haploid genomes of sunflower (3,000 Mb/1C), and provide a greater than 99% probability of obtaining a clone of interest. The frequencies of BAC and BIBAC clones carrying chloroplast or mitochondrial DNA sequences were estimated to be 2.35 and 0.04%, respectively, and insert-empty clones were less than 0.5%. To facilitate chromosome engineering and anchor the sunflower genetic map to its chromosomes, one to three single- or low-copy RFLP markers from each linkage group of sunflower were used to design pairs of overlapping oligonucleotides (overgos). Thirty-six overgos were designed and pooled as probes to screen a subset (5.1×) of the BAC and BIBAC libraries. Of the 36 overgos, 33 (92%) gave at least one positive clone and 3 (8%) failed to hit any clone. As a result, 195 BAC and BIBAC clones representing 19 linkage groups were identified, including 76 BAC clones and 119 BIBAC clones, further verifying the genome coverage and utility of the libraries. These BAC and BIBAC libraries and linkage group-specific clones provide resources essential for comprehensive research of the sunflower genome.  相似文献   

5.
Rice is an important crop and a model system for monocot genomics, and is a target for whole genome sequencing by the International Rice Genome Sequencing Project (IRGSP). The IRGSP is using a clone by clone approach to sequence rice based on minimum tiles of BAC or PAC clones. For chromosomes 10 and 3 we are using an integrated physical map based on two fingerprinted and end-sequenced BAC libraries to identifying a minimum tiling path of clones. In this study we constructed and tested two rice genomic libraries with an average insert size of 10 kb (10-kb library) to support the gap closure and finishing phases of the rice genome sequencing project. The HaeIII library contains 166,752 clones covering approximately 4.6x rice genome equivalents with an average insert size of 10.5 kb. The Sau3AI library contains 138,960 clones covering 4.2x genome equivalents with an average insert size of 11.6 kb. Both libraries were gridded in duplicate onto 11 high-density filters in a 5 x 5 pattern to facilitate screening by hybridization. The libraries contain an unbiased coverage of the rice genome with less than 5% contamination by clones containing organelle DNA or no insert. An efficient method was developed, consisting of pooled overgo hybridization, the selection of 10-kb gap spanning clones using end sequences, transposon sequencing and utilization of in silico draft sequence, to close relatively small gaps between sequenced BAC clones. Using this method we were able to close a majority of the gaps (up to approximately 50 kb) identified during the finishing phase of chromosome-10 sequencing. This method represents a useful way to close clone gaps and thus to complete the entire rice genome.  相似文献   

6.
7.
The bacterial artificial chromosome (BAC) has become the most popular tool for cloning large DNA fragments. The inserts of most BAC clones average 100-200 kilobases (kb) and molecular characterization of such large DNA fragments is a major challenge. Here we report a simple and expedient technique for physical mapping of BAC inserts. Individual BAC molecules were immobilized on glass slides coated with Poly-L-lysine. The intact circular BAC molecules were visualized by fluorescence in situ hybridization using BAC DNA as a probe. The 7.4 kb BAC vector was extended to approximately 2.44 kb per micrometer. Digitally measured linear distances can be transformed into kilobases of DNA using the extension of BAC vector as a standard calibration. We mapped DNA fragments as small as 2 kb directly on circular BAC molecules. A rice BAC clone containing both tandem and dispersed repeats was analyzed using this technique. The distribution and organization of the different repeats within the BAC insert were efficiently determined. The results showed that this technique will be especially valuable for characterizing BAC clones that contain complex repetitive DNA sequences.  相似文献   

8.
Cultivation-independent surveys of ribosomal RNA genes have revealed the existence of novel microbial lineages, many with no known cultivated representatives. Ribosomal RNA-based analyses, however, often do not provide significant information beyond phylogenetic affiliation. Analysis of large genome fragments recovered directly from microbial communities represents one promising approach for characterizing uncultivated microbial species better. To assess further the utility of this approach, we constructed large-insert bacterial artificial chromosome (BAC) libraries from the genomic DNA of planktonic marine microbial assemblages. The BAC libraries we prepared had average insert sizes of 80 kb, with maximal insert sizes > 150 kb. A rapid screening method assessing the phylogenetic diversity and representation in the library was developed and applied. In general, representation in the libraries agreed well with previous culture-independent surveys based on polymerase chain reaction (PCR)amplified rRNA fragments. A significant fraction of the genome fragments in the BAC libraries originated from as yet uncultivated microbial species, thought to be abundant and widely distributed in the marine environment. One entire BAC insert, derived from an uncultivated, surface-dwelling euryarchaeote, was sequenced completely. The planktonic euryarchaeal genome fragment contained some typical archaeal genes, as well as unique open reading frames (ORFs) suggesting novel function. In total, our results verify the utility of BAC libraries for providing access to the genomes of as yet uncultivated microbial species. Further analysis of these BAC libraries has the potential to provide significant insight into the genomic potential and ecological roles of many indigenous microbial species, cultivated or not.  相似文献   

9.
Pea (Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2-0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.  相似文献   

10.
Cloning of heat-shock locus 93D from Drosophila melanogaster.   总被引:6,自引:1,他引:5       下载免费PDF全文
Using the microcloning approach a number of recombinant lambda phages carrying DNA from the 93D region have been isolated. Screening genomic libraries, cloned in phage lambda or cosmid vectors, with this isolated DNA yielded a series of overlapping DNA fragments from the region 93D6-7 as shown by in situ hybridization to polytene chromosomes. In vitro 32P-labelled nuclear RNA prepared from heat-shocked third instar larvae hybridized specifically to one fragment within 85 kb of cloned DNA. The region which is specifically transcribed after heat shock could be defined to a cluster of internally-repetitive DNA and its neighbouring proximal sequences. Over a sequence of 10-12 kb in length the DNA is cut into repeat units of approximately 280 nucleotides by the restriction endonuclease TaqI. The TaqI repeat sequences are unique in the Drosophila genome.  相似文献   

11.
The construction of representative large insert DNA libraries is critical for the analysis of complex genomes. The predominant vector system for such work is the yeast artificial chromosome (YAC) system. Despite the success of YACs, many problems have been described including: chimerism, tedious steps in library construction and low yields of YAC insert DNA. Recently a new E.coli based system has been developed, the bacterial artificial chromosome (BAC) system, which offers many potential advantages over YACs. We tested the BAC system in plants by constructing an ordered 13,440 clone sorghum BAC library. The library has a combined average insert size, from single and double size selections, of 157 kb. Sorghum inserts of up to 315 kb were isolated and shown to be stable when grown for over 100 generations in liquid media. No chimeric clones were detected as determined by fluorescence in situ hybridization of ten BAC clones to metaphase and interphase S.bicolor nuclei. The library was screened with six sorghum probes and three maize probes and all but one sorghum probe hybridized to at least one BAC clone in the library. To facilitate chromosome walking with the BAC system, methods were developed to isolate the proximal ends of restriction fragments inserted into the BAC vector and used to isolate both the left and right ends of six randomly selected BAC clones. These results demonstrate that the S. bicolor BAC library will be useful for several physical mapping and map-based cloning applications not only in sorghum but other related cereal genomes, such as maize. Furthermore, we conclude that the BAC system is suitable for most large genome applications, is more 'user friendly' than the YAC system, and will likely lead to rapid progress in cloning biologically significant genes from plants.  相似文献   

12.
We constructed and characterized arrayed bacterial artificial chromosome (BAC) libraries of five Drosophila species (D. melanogaster, D. simulans, D. sechellia, D. auraria, and D. ananassae), which are genetically well characterized in the studies of meiosis, evolution, population genetics, and developmental biology. The BAC libraries comprise 8,000 to 12,500 clones for each species, estimated to cover the most of the genomes. We sequenced both ends of most of these BAC clones with a success rate of 91%. Of these, 53,701 clones consisting of non-repetitive BAC end sequences (BESs) were mapped with reference of the public D. melanogaster genome sequences. The BES mapping estimated that the BAC libraries of D. auraria and D. ananassae covered 47% and 57% of the D. melanogaster genome, respectively, and those of D. melanogaster, D. sechellia, and D. simulans covered 94-97%. The low coverage by BESs of D. auraria and D. ananassae may be due to the high sequence divergence with D. melanogaster. From the comparative BES mapping, 111 possible breakpoints of chromosomal rearrangements were identified in these four species. The breakpoints of the major chromosome rearrangement between D. simulans and D. melanogaster on the third chromosome were determined within 20 kb in 84E and 30 kb in 93E/F. Corresponding breakpoints were also identified in D. sechellia. The BAC clones described here will be an important addition to the Drosophila genomic resources.  相似文献   

13.
For molecular and cytogenetic studies, two partial bacterial artificial chromosome (BAC) libraries of the garlic cultivar Allium sativum L. 'Danyang' were constructed using high molecular weight (HMW) garlic DNA, the pBAC1-SACB1 vector, and the pIndigoBAC536 vector. The average insert size of the BAC library was about 90 kb. The sequence compositions of the BAC clones were characterized by Southern hybridization with garlic genomic DNA and a repetitive sequence clone of garlic. Two BAC clones with weak signals (thus implying mostly unique sequences), GBC2-5e and GBC2-4d, were selected for FISH analysis. FISH analysis localized the GBC2-5e (approximately 100 kb) BAC clone on the long arm of garlic chromosome 7. The other BAC clone, GBC2-4d (approximately 110 kb), gave rise to discrete FISH signals on a mid-size early metaphase chromosome. The FISH screening with BAC clones proved to be a useful resource for molecular cytogenetic studies of garlic, and will be useful for further mapping and sequencing studies of important genes of this plant.  相似文献   

14.
A microbial fuel cell is a device that directly converts metabolic energy into electricity, using electrochemical technology. The analysis of large genome fragments recovered directly from microbial communities represents one promising approach to characterizing uncultivated electrochemical microorganisms. To further assess the utility of this approach, we constructed large-insert (140 kb) bacterial artificial chromosome (BAC) libraries from the genomic DNA of a microbial fuel cell, which had been operated for three weeks using acetate media. We screened the expression of several ferric reductase activities in the Escherichia coli host, in order to determine the extent of heterologous expression of metal-ion-reducing enzymes in the library. Phylogenetic analysis of 16S rRNA gene sequences recovered from the BAC libraries indicates that they contain DNA from a wide diversity of microbial organisms. The constructed bacterial library proved a powerful tool for exploring metal-ion reductase activities, providing information on the electron transport pathway of electrochemical microbial (ECM) organisms.  相似文献   

15.
Rice is a leading grain crop and the staple food for over half of the world population. Rice is also an ideal species for genetic and biological studies of cereal crops and other monocotyledonous plants because of its small genome and well developed genetic system. To facilitate rice genome analysis leading to physical mapping, the identification of molecular markers closely linked to economic traits, and map-based cloning, we have constructed two rice bacterial artificial chromosome (BAC) libraries from the parents of a permanent mapping population (Lemont and Teqing) consisting of 400 F9 recombinant inbred lines (RILs). Lemont (japonica) and Teqing (indica) represent the two major genomes of cultivated rice, both are leading commercial varieties and widely used germplasm in rice breeding programs. The Lemont library contains 7296 clones with an average insert size of 150 kb, which represents 2.6 rice haploid genome equivalents. The Teqing library contains 14208 clones with an average insert size of 130 kb, which represents 4.4. rice haploid genome equivalents. Three single-copy DNA probes were used to screen the libraries and at least two overlapping BAC clones were isolated with each probe from each library, ranging from 45 to 260 kb in insert size. Hybridization of BAC clones with chloroplast DNA probes and fluorescent in situ hybridization using BAC DNA as probes demonstrated that both libraries contain very few clones of chloroplast DNA origin and are likely free of chimeric clones. These data indicate that both BAC libraries should be suitable for map-based cloning of rice genes and physical mapping of the rice genome.  相似文献   

16.
The parasitic nematode, Brugia malayi, causes lymphatic filariasis in humans, which in severe cases leads to the condition known as elephantiasis. The parasite contains an endosymbiotic alpha-proteobacterium of the genus Wolbachia that is required for normal worm development and fecundity and is also implicated in the pathology associated with infections by these filarial nematodes. Bacterial artificial chromosome libraries were constructed from B. malayi DNA and provide over 11-fold coverage of the nematode genome. Wolbachia genomic fragments were simultaneously cloned into the libraries giving over 5-fold coverage of the 1.1 Mb bacterial genome. A physical framework for the Wolbachia genome was developed by construction of a plasmid library enriched for Wolbachia DNA as a source of sequences to hybridise to high-density bacterial artificial chromosome colony filters. Bacterial artificial chromosome end sequencing provided additional Wolbachia probe sequences to facilitate assembly of a contig that spanned the entire genome. The Wolbachia sequences provided a marker approximately every 10 kb. Four rare-cutting restriction endonucleases were used to restriction map the genome to a resolution of approximately 60 kb and demonstrate concordance between the bacterial artificial chromosome clones and native Wolbachia genomic DNA. Comparison of Wolbachia sequences to public databases using BLAST algorithms under stringent conditions allowed confident prediction of 69 Wolbachia peptide functions and two rRNA genes. Comparison to closely related complete genomes revealed that while most sequences had orthologs in the genome of the Wolbachia endosymbiont from Drosophila melanogaster, there was no evidence for long-range synteny. Rather, there were a few cases of short-range conservation of gene order extending over regions of less than 10 kb. The molecular scaffold produced for the genome of the Wolbachia from B. malayi forms the basis of a genomic sequencing effort for this bacterium, circumventing the difficult challenge of purifying sufficient endosymbiont DNA from a tropical parasite for a whole genome shotgun sequencing strategy.  相似文献   

17.
To facilitate isolation and characterization of disease and insect resistance genes important to potato, two bacterial artificial chromosome (BAC) libraries were constructed from genomic DNA of the Mexican wild diploid species, Solanum pinnatisectum, which carries high levels of resistance to the most important potato pathogen and pest, the late blight and the Colorado potato beetle (CPB). One of the libraries was constructed from the DNA, partially digested with BamHI, and it consists of 40,328 clones with an average insert size of 125 kb. The other library was constructed from the DNA partially digested with EcoRI, and it consists of 17,280 clones with an average insert size of 135 kb. The two libraries, together, represent approximately six equivalents of the wild potato haploid genome. Both libraries were evaluated for contamination with organellar DNA sequences and were shown to have a very low percentage (0.65–0.91%) of clones derived from the chloroplast genome. High-density filters, prepared from the two libraries, were screened with ten restriction fragment length polymorphism (RFLP) markers linked to the resistance genes for late blight, CPB, Verticillium wilt and potato cyst nematodes, and the gene Sr1 for the self-incompatibility S-locus. Thirty nine positive clones were identified and at least two positive BAC clones were detected for each RFLP marker. Four markers that are linked to the late blight resistance gene Rpi1 hybridized to 14 BAC clones. Fifteen BAC clones were shown to harbor the PPO (polyphenol oxidase) locus for the CPB resistance by three RFLP probes. Two RFLP markers detected five BAC clones that were linked to the Sr1 gene for self-incompatibility. These results agree with the librarys predicted extent of coverage of the potato genome, and indicated that the libraries are useful resources for the molecular isolation of disease and insect resistance genes, as well as other economically important genes in the wild potato species. The development of the two potato BAC libraries provides a starting point, and landmarks for BAC contig construction and chromosome walking towards the map-based cloning of agronomically important target genes in the species.Communicated by H.F. Linskens  相似文献   

18.
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.  相似文献   

19.
20.
Two bacterial artificial chromosome (BAC) libraries were constructed from an inbred line derived from a cultivar of cucumber (Cucumis sativus L.). Intact nuclei were isolated and embedded in agarose plugs, and high-molecular-weight DNA was subsequently partially digested with BamHI or EcoRI. Ligation of double size-selected DNA fragments with the pECBAC1 vector yielded two libraries containing 23,040 BamHI and 18,432 EcoRI clones. The average BamHI and EcoRI insert sizes were estimated to be 107.0 kb and 100.8 kb, respectively, and BAC clones lacking inserts were 1.3% and 14.5% in the BamHI and EcoRI libraries, respectively. The two libraries together represent approximately 10.8 haploid cucumber genomes. Hybridization with a C0t-1 DNA probe revealed that approximately 36% of BAC clones likely carried repetitive sequence-enriched DNA. The frequencies of BAC clones that carry chloroplast or mitochondrial DNA range from 0.20% to 0.47%. Four sequence-characterized amplified region (SCAR), four simple sequence repeat, and an randomly amplified polymorphic DNA marker linked with yield component quantitative trait loci were used either as probes to hybridize high-density colony filters prepared from both libraries or as primers to screen an ordered array of pooled BAC DNA prepared from the BamHI library. Positive BAC clones were identified in predicted numbers, as screening by polymerase chain reaction amplification effectively overcame the problems associated with an overabundance of positives from hybridization with two SCAR markers. The BAC clones identified herein that are linked to the de (determinate habit) and F (gynoecy) locus will be useful for positional cloning of these economically important genes. These BAC libraries will also facilitate physical mapping of the cucumber genome and comparative genome analyses with other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号