共查询到20条相似文献,搜索用时 15 毫秒
1.
Rizos H McKenzie HA Ayub AL Woodruff S Becker TM Scurr LL Stahl J Kefford RF 《The Journal of biological chemistry》2006,281(49):38080-38088
Alterations in the p14(ARF) tumor suppressor are frequent in many human cancers and are associated with susceptibility to melanoma, pancreatic cancer, and nervous system tumors. In addition to its p53-regulatory functions, p14(ARF) has been shown to influence ribosome biogenesis and to regulate the endoribonuclease B23, but there remains considerable controversy about its nucleolar role. We sought to clarify the activities of p14(ARF) by studying its interaction with ribosomes. We show that p14(ARF) and B23 interact within the nucleolar 60 S preribosomal particle and that this interaction does not require rRNA. In contrast to previous reports, we found that expression of p14(ARF) does not significantly alter ribosome biogenesis but inhibits polysome formation and protein translation in vivo. These results suggest a ribosome-dependent p14(ARF) pathway that regulates cell growth and thus complements p53-dependent p14(ARF) functions. 相似文献
2.
Tsuji K Mizumoto K Sudo H Kouyama K Ogata E Matsuoka M 《Biochemical and biophysical research communications》2002,295(3):621-629
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2. 相似文献
3.
《Cell cycle (Georgetown, Tex.)》2013,12(4):829-839
The p14ARF tumour suppressor is frequently targeted for inactivation in many human cancers and in individuals predisposed to cutaneous melanoma. The functions of p14ARF are closely linked with its subcellular distribution. Nucleolar p14ARF dampens ribosome biosynthesis and nucleoplasmic forms of p14ARF activate the p53 pathway and induce cell cycle arrest. p14ARF can also be recruited to mitochondria where it interacts with many mitochondrial proteins, including Bcl-xL and p32 to induce cell death. It has been suggested that the movement of p14ARF to mitochondria requires its interaction with p32, but we now show that the ARF-p32 interaction is not necessary for the accumulation of p14ARF in mitochondria. Instead, highly hydrophobic domains within the amino-terminal half of p14ARF act as mitochondrial import sequences. We suggest that once this hydrophobic pocket is exposed, possibly in a stimulus-dependent manner, it accelerates the mitochondrial import of p14ARF. This allows the interaction of p14ARF with mitochondrial proteins, including p32 and enables p53-independent cell death. 相似文献
4.
Inhibition of p63 transcriptional activity by p14ARF: functional and physical link between human ARF tumor suppressor and a member of the p53 family 总被引:4,自引:0,他引:4 下载免费PDF全文
Calabrò V Mansueto G Santoro R Gentilella A Pollice A Ghioni P Guerrini L La Mantia G 《Molecular and cellular biology》2004,24(19):8529-8540
5.
A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF
The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene. 相似文献
6.
Antje Repenning Daniela Happel Caroline Bouchard Marion Meixner Yesim VerelYilmaz Hartmann Raifer Lena Holembowski Eberhard Krause Elisabeth Kremmer Regina Feederle Corinna U Keber Michael Lohoff Emily P Slater Detlef K Bartsch UtaMaria Bauer 《The EMBO journal》2021,40(13)
The p14ARF protein is a well‐known regulator of p53‐dependent and p53‐independent tumor‐suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo‐ and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C‐terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF. In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF. Genotoxic stress causes augmented interaction between PRMT1 and p14ARF, accompanied by arginine methylation of p14ARF. PRMT1‐dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53‐independent apoptosis. This PRMT1‐p14ARF cooperation is cancer‐relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1‐mediated arginine methylation is an important trigger for p14ARF’s stress‐induced tumor‐suppressive function. 相似文献
7.
8.
García MA Collado M Muñoz-Fontela C Matheu A Marcos-Villar L Arroyo J Esteban M Serrano M Rivas C 《The EMBO journal》2006,25(18):4284-4292
Oncogenic viruses frequently target the pathways controlled by tumor suppressor genes, suggesting an extra function for these proteins as antiviral factors. The control exerted by the tumor suppressor Arf on cellular proliferation is crucial to restrict tumor development; however, a potential contribution of Arf to prevent viral infectivity has remained unexplored. In the present study, we investigated the consequences of loss or increased expression of Arf on viral infection. Our results reveal that ARF expression is induced by interferon and after viral infection. Furthermore, we show that ARF protects against viral infection in a gene dosage-dependent manner, and that this antiviral action is mediated in part by PKR through a mechanism that involves ARF-induced release of PKR from nucleophosmin complexes. Finally, Arf-null mice were hypersensitive to viral infection compared to wild-type mice. Together, our results reveal a novel and unexpected role for the tumor suppressor ARF in viral infection surveillance. 相似文献
9.
Evidence that replication of the antitumor adenovirus ONYX-015 is not controlled by the p53 and p14(ARF) tumor suppressor genes 总被引:1,自引:0,他引:1
Edwards SJ Dix BR Myers CJ Dobson-Le D Huschtscha L Hibma M Royds J Braithwaite AW 《Journal of virology》2002,76(24):12483-12490
The adenovirus mutant ONYX-015 is in phase III clinical trials as a novel antitumor therapy. Its apparent efficacy is thought to be due to its ability to replicate selectively in tumor cells defective in the signaling pathway for p53. Recent data have shown that p14(ARF), a positive regulator of p53, inhibits ONYX-015 replication in cells with a wild-type p53, a phenotype that characterizes normal cells. We, however, found that ONYX-015 activates p53 in tumor cells and in normal cells and that this can occur without p14(ARF) induction. We also show that ONYX-015 is not attenuated in cells with functional p53, whether or not p14(ARF) is expressed, and that where attenuation does occur, it is cell type specific. 相似文献
10.
In addition to its well-characterized function as a tumor suppressor, p14ARF (ARF) is a positive regulator of topoisomerase I (topo I), a central enzyme in DNA metabolism and a target for cancer therapy. We previously showed that topo I hyperphosphorylation, a cancer-associated event mediated by elevated levels of the protein kinase CK2, increases topo I activity and the cellular sensitivity to topo I-targeted drugs. Topo I hyperphosphorylation also increases its interaction with ARF. Because the ARF−topo I interaction could be highly relevant to DNA metabolism and cancer treatment, we identified the regions of topo I involved in ARF binding and characterized the effects of ARF binding on topo I function. Using a series of topo I deletion constructs, we found that ARF interacted with the topo I core domain, which encompasses most of the catalytic and DNA-interacting residues. ARF binding increased the DNA relaxation activity of hyperphosphorylated topo I by enhancing its association with DNA, but did not affect the topo I catalytic rate. In cells, ARF promoted the chromatin association of hyperphosphorylated, but not basal phosphorylated, topo I, and increased topo I-mediated DNA nicking under conditions of oxidative stress. The aberrant nicking was found to correlate with increased formation of DNA double-strand breaks, which are precursors of many genome destabilizing events. The results suggest that the convergent actions of oxidative stress and elevated CK2 and ARF levels, which are common features of cancer cells, lead to a dysregulation of topo I that may contribute both to the cellular response to topo I-targeted drugs and to genome instability. 相似文献
11.
12.
13.
14.
15.
Matsuoka M Kurita M Sudo H Mizumoto K Nishimoto I Ogata E 《Biochemical and biophysical research communications》2003,301(4):1000-1010
The ARF (p19ARF for the mouse ARF consisting of 169 amino acids and p14ARF for the human ARF consisting of 132 amino acids) genes upregulate p53 activities to induce cell cycle arrest and sensitize cells to apoptosis by inhibiting Mdm2 activity. p53-independent apoptosis also is induced by ectopic expression of p19ARF. We constructed various deletion mutants of p19ARF with a cre/loxP-regulated adenoviral vector to determine the regions of p19ARF which are responsible for p53-independent apoptosis. Ectopic expression of the C-terminal region (named C40) of p19ARF whose primary sequence is unique to the rodent ARF induced prominent apoptosis in p53-deficient mouse embryo fibroblasts. Relatively low-grade but significant apoptosis also was induced in p53-deficient mouse embryo fibroblasts by ectopic expression of p19ARF1-129, a p19ARF deletion mutant deficient in the C40 region. In contrast, ectopic expression of the wild-type p14ARF did not induce significant apoptosis in human cells. Taken together, we concluded that p53-independent apoptosis was mediated through multiple regions of the mouse ARF including C40, and the ability of the ARF gene to mediate p53-independent apoptosis has been not well conserved during mammalian evolution. 相似文献
16.
The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator 总被引:4,自引:0,他引:4
The murine tumor suppressor p19(ARF) (p14(ARF) in humans) is thought to fulfill an important protective role in preventing primary cells from oncogenic transformation via its action in the p53 pathway. Several disease-implicated regulators of p19(ARF) are known to date, among which are the T-box genes TBX2, which resides on an amplicon in primary breast tumors, and TBX3, which is mutated in the human developmental disorder Ulnar-Mammary syndrome. Here we identify a variant T-site, matching 13 of 20 nucleotides of a consensus T-site, as the essential TBX2/TBX3-binding element in the human p14(ARF) promoter. Mutant analysis indicates that both the consensus T-box and a C-terminal conserved repression domain are essential for p14(ARF) repression. Whereas the core nucleotides required for interaction of the archetypal T-box protein Brachyury with a consensus T-site are conserved in the variant site, additional flanking nucleotides contribute to the specificity of TBX2 binding. This is illustrated by the inability of TBX1A or Xbra to activate via the variant p14(ARF) T-site. Importantly, this suggests a hitherto unsuspected level of specificity associated with T-box factors and corresponding recognition sites in regulating their target genes in vivo. 相似文献
17.
Farmer TE Williams CS Washington MK Hiebert SW 《Journal of cellular biochemistry》2008,104(6):2228-2240
p19(ARF) is a tumor suppressor that is frequently deleted in human cancer. It lies at chromosome 9p21 and shares exons 2 and 3 with p16(ink4a), which is also inactivated by these cancer-associated deletions. The canonical pathway by which p19(ARF) is thought to suppress tumorigenesis through activation of the p53 tumor suppressor. In response to hyperproliferative signals, such as expression of oncogenes, p19(ARF) is induced and binds to the MDM2 ubiquitin ligase, sequestering it in the nucleolus to allow the accumulation of p53. However, p19(ARF) also has MDM2 and p53 independent functions. In human colon cancer, p19(ARF) is only rarely deleted, but it is more frequently silenced by DNA promoter methylation. Here we show that inactivation of p19(ARF) in mice increases the number of cycling cells in the crypts of the colonic epithelium. Moreover, inactivation of p19(ARF) exacerbated the ulceration of the colonic epithelium caused by dextran sodium sulfate (DSS). These effects were similar to those observed in mice lacking myeloid translocation gene-related-1 (Mtgr1), and mice lacking both of these genes showed an even greater sensitivity to DSS. Surprisingly, inactivation of p19(ARF) restored the loss of the secretory lineage in mice deficient in Mtgr1, suggesting an additional role for p19(ARF) in the small intestinal epithelium. 相似文献
18.
《Cell cycle (Georgetown, Tex.)》2013,12(7):686-690
The p53-mediated pathway cell cycle arrest and apoptosis is central to cancer and an important point of focus for therapeutics development. The p14ARF ("ARF") tumor suppressor induces the p53 pathway in response to oncogene activation or DNA damage. However, ARF is predominantly nucleolar in localization and engages in several interactions with nucleolar proteins, whereas p53 is nucleoplasmic. This raises the question as to how ARF initiates its involvement in the p53 pathway. We have found that UV irradiation of cells disrupts the interaction of ARF with two of its nucleolar binding partners, B23(NPM, nucleophosmin, NO38, numatrin) and topoisomerase I, and promotes an immediate and transient subnuclear redistribution of ARF to the nucleoplasm, where it can engage the p53 pathway (Lee et al, Cancer Research 65:9834-42; 2005). The results support a model in which the nucleolus serves as a p53 upstream sensor of cellular stress, and add to a growing body of evidence that nucleolar sequestration of ARF prevents activation of p53. The results also have therapeutic implications for therapies based on exploiting p53 and other cellular stress response pathways to suppress cancer. 相似文献
19.
DNA topoisomerase II is an essential nuclear enzyme for proliferation of eukaryotic cells and plays important roles in many aspects of DNA processes. In this report, we have demonstrated that the catalytic activity of topoisomerase IIalpha, as measured by decatenation of kinetoplast DNA and by relaxation of negatively supercoiled DNA, was stimulated approximately 2-3-fold by the tumor suppressor p53 protein. In order to determine the mechanism by which p53 activates the enzyme, the effects of p53 on the topoisomerase IIalpha-mediated DNA cleavage/religation equilibrium were assessed using the prototypical topoisomerase II poison, etoposide. p53 had no effect on the ability of the enzyme to make double-stranded DNA break and religate linear DNA, indicating that the stimulation of the enzyme catalytic activity by p53 was not due to alteration in the formation of covalent cleavable complexes formed between topoisomerase IIalpha and DNA. The effects of p53 on the catalytic inhibition of topoisomerase IIalpha were examined using a specific catalytic inhibitor, ICRF-193, which blocks the ATP hydrolysis step of the enzyme catalytic cycle. Clearly manifested in decatenation and relaxation assays, p53 reduced the catalytic inhibition of topoisomerase IIalpha by ICRF-193. ATP hydrolysis assays revealed that the ATPase activity of topoisomerase IIalpha was specifically enhanced by p53. Immunoprecipitation experiments revealed that p53 physically interacts with topoisomerase IIalpha to form molecular complexes without a double-stranded DNA intermediary in vitro. To investigate whether p53 stimulates the catalytic activity of topoisomerase II in vivo, we expressed wild-type and mutant p53 in Saos-2 osteosarcoma cells lacking functional p53. Wild-type, but not mutant, p53 stimulated topoisomerase II activity in nuclear extract from these transfected cells. Our data propose a new role for p53 to modulate the catalytic activity of topoisomerase IIalpha. Taken together, we suggest that the p53-mediated response of the cell cycle to DNA damage may involve activation of topoisomerase IIalpha. 相似文献
20.
The retinoblastoma (RB) tumor suppressor protein is a negative regulator of cell proliferation that is functionally inactivated in the majority of human tumors. Elevated Cdk activity via RB pathway mutations is observed in virtually every human cancer. Thus, Cdk inhibitors have tremendous promise as anticancer agents although detailed mechanistic knowledge of their effects on RB function is needed to harness their full potential. Here, we illustrate a novel function for Cdks in regulating the subcellular localization of RB. We present evidence of significant cytoplasmic mislocalization of ordinarily nuclear RB in cells harboring Cdk4 mutations. Our findings uncover a novel mechanism to circumvent RB-mediated growth suppression by altered nucleocytoplasmic trafficking via the Exportin1 pathway. Cytoplasmically mislocalized RB could be efficiently confined to the nucleus by inhibiting the Exportin1 pathway, reducing Cdk activity, or mutating the Cdk-dependent phosphorylation sites in RB that result in loss of RB-Exportin1 association. Thus RB-mediated tumor suppression can be subverted by phosphorylation-dependent enhancement of nuclear export. These results support the notion that tumor cells can modulate the protein transport machinery thereby making the protein transport process a viable therapeutic target. 相似文献