首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica is one of the major food-borne pathogens associated with ready-to-eat fresh foods. Although polluted water might be a significant source of contamination in the field, factors that influence the transfer of Salmonella from water to the crops are not well understood, especially under conditions of low pathogen levels in water. The aim of this study was to investigate the short- and long-term (1 h to 28 days) persistence of Salmonella enterica serotype Typhimurium in the phyllosphere and the rhizosphere of parsley following spray irrigation with contaminated water. Plate counting and quantitative real-time PCR (qRT-PCR)-based methods were implemented for the quantification. By applying qRT-PCR with enrichment, we were able to show that even irrigation with water containing as little as ~300 CFU/ml resulted in the persistence of S. Typhimurium on the plants for 48 h. Irrigation with water containing 8.5 log CFU/ml resulted in persistence of the bacteria in the phyllosphere and the rhizosphere for at least 4 weeks, but the population steadily declined with a major reduction in bacterial counts, of ~2 log CFU/g, during the first 2 days. Higher levels of Salmonella were detected in the phyllosphere when plants were irrigated during the night compared to irrigation during the morning and during winter compared to the other seasons. Further elucidation of the mechanisms underlying the transfer of Salmonella from contaminated water to crops, as well as its persistence over time, will enable the implementation of effective irrigation and control strategies.  相似文献   

2.
Nontyphoid salmonellosis caused by Salmonella enterica is the most common bacterial food-borne illness in humans, and fresh produce, including tomatoes, is a common vehicle. Accumulating data indicate that human enteric pathogenic bacteria, including S. enterica, interact actively with plants. Tomato plants were inoculated with S. enterica to evaluate plausible contamination routes and to determine if the tomato cultivar affects S. enterica colonization. S. enterica population levels on tomato leaves were cultivar dependent. S. enterica levels on Solanum pimpinellifolium (West Virginia 700 [WVa700]) were lower than on S. lycopersicum cultivars. S. enterica preferentially colonized type 1 trichomes and rarely interacted with stomata, unlike what has been reported for cut lettuce leaves. Early S. enterica leaf colonization led to contamination of all fruit, with levels as high as 10(5) CFU per fruit. Reduced bacterial speck lesion formation correlated with reduced S. enterica populations in the phyllosphere. Tomato pedicels and calyxes also harbored large S. enterica populations following inoculation via contaminated water postharvest. WVa700 green fruit harbored significantly smaller S. enterica populations than did red fruit or S. lycopersicum fruit. We found that plants irrigated with contaminated water had larger S. enterica populations than plants grown from seeds planted in infested soil. However, both routes of contamination resulted in detectable S. enterica populations in the phyllosphere. Phyllosphere S. enterica populations pose a risk of fruit contamination and subsequent human disease. Restricting S. enterica phyllosphere populations may result in reduced fruit contamination. We have identified WVa700 as a tomato cultivar that can restrict S. enterica survival in the phyllosphere.  相似文献   

3.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

4.
Although biological control agents (BCAs) have been used extensively for controlling insects and pathogens of plants, little is known regarding the effects of such agents on the indigenous microbial communities within the plant phyllosphere. We assessed the effect of the BCA Bacillus thuringiensis (Bt) on the microbial communities within the pepper plant phyllosphere using culture-independent methodologies. Phospholipid fatty acid (PLFA) analysis suggested that the bacterial and fungal biomass were not significantly affected following Bt application. However, principal component analysis of PLFA data indicated that Bt did change the phyllosphere microbial community structure significantly. 16S rRNA gene-directed PCR with denaturing gradient gel electrophoresis (DGGE) also suggested a significant change in the phyllosphere bacterial community structure following Bt inoculation. Phylogenetic analysis of excised DGGE bands suggested a change in bacterial phyla; bands from untreated samples predominantly belonged to the Firmicutes, while Gammaproteobacteria abounded in the treated samples.  相似文献   

5.
The efficacy of Pseudomonas fluorescens EPS62e in the biocontrol of Erwinia amylovora, the causal agent of fire blight of apple and pear, depends on the colonization of plant surfaces after spray application. A procedure to increase cell survival in the phyllosphere was developed consisting of saline stress and osmolyte amendment to the growth medium during inoculum preparation. Hyperosmotic stress induced the synthesis of the osmolytes trehalose, N-acetylglutaminylglutamine amide and glucosyl-glycerol, but decreasing growth rate. Amendment of the growth medium with glycine betaine increased growth rate and cell yield and promoted its intracellular accumulation. Under controlled environment conditions, osmoadaptation increased by 10- to 100-fold cell survival to desiccation and to low relative humidity conditions on plant surfaces, in comparison with the nonosmoadapted controls. In the field, cell survival increased 100-1000 times in immature fruit upon osmoadaptation but was not significantly affected in flowers where active colonization occurs. The efficacy in the control of fire blight infections was increased 30-50% upon osmoadaptation on immature fruits but was not affected in blossoms. The method of osmoadaptation may be useful for improving the fitness and efficacy of biological control agents of phyllosphere pathogens under limiting humidity conditions.  相似文献   

6.
Molecular methods are useful for both to monitor anthropogenic viral, bacterial, and protozoan enteropathogens, and to track pathogen specific markers in a complex environment in order to reveal sources of these pathogens. Molecular genetic markers for fecal viruses, bacteria, and protozoans hold promise for monitoring environmental pollution and water quality. The demand for microbiologically safe waters grows exponentially due to the global demographic rise of the human population. Economically important shellfish, such as oysters, which are harvested commercially and preferentially consumed raw can be of public health importance if contaminated with human waterborne pathogens. However, feral molluscan shellfish which do not have an apparent economic value serve as indicators in monitoring aquatic environments for pollution with human waterborne pathogens and for sanitary assessment of water quality. Current technology allows for multiplexed species-specific identification, genotyping, enumeration, viability assessment, and source-tracking of human enteropathogens which considerably enhances the pathogen source-tracking efforts.  相似文献   

7.
Understanding the current and future distributions of plant pathogens is critical to predict the plant performance and related economic benefits in the changing environment. Yet, little is known about the roles of environmental drivers in shaping the profiles of fungal plant pathogens in phyllosphere, an important habitat of microbiomes on Earth. Here, using a large-scale investigation of Eucalyptus phyllospheric microbiomes in Australia and the multiple linear regression model, we show that precipitation is the most important predictor of fungal taxonomic diversity and abundance. The abundance of fungal plant pathogens in phyllosphere exhibited a positive linear relationship with precipitation. With this empirical dataset, we constructed current and future atlases of phyllosphere plant pathogens to estimate their spatial distributions under different climate change scenarios. Our atlases indicate that the abundance of fungal plant pathogens would increase especially in the coastal regions with up to 100-fold increase compared with the current abundance. These findings advance our understanding of the distributions of fungal plant pathogens in phyllospheric microbiomes under the climate change, which can improve our ability to predict and mitigate their impacts on plant productivity and economic losses.  相似文献   

8.
Poultry meat has been associated frequently and consistently with the transmission of enteric pathogens, including Salmonella and Campylobacter. This association has resulted in the development of HACCP‐based intervention strategies. These strategies (hurdles) begin with elite breeder flocks and filter down the production pyramid. These hurdles include those already established, such as biosecurity, vaccination, competitive exclusion, pre‐ and probiotics, feed and water control, and those more experimental, such as bacteriophage or immunoglobulin therapy. The reduction in enteropathogens entering the processing plant, which employs critical control points, further reduce the exposure of consumers to these organisms. The synergistic application of hurdles will result in an environment that is restrictive and detrimental to enteropathogen colonization and contamination.  相似文献   

9.
One of the most common vehicles by which Escherichia coli O157:H7 may be introduced into crops is contaminated irrigation water. Water contamination is becoming more common in rural areas of the United States as a result of large animal operations, and up to 40% of tested drinking-water wells are contaminated with E. coli. In this study, 2 contrasting soil samples were inoculated with E. coli O157:H7 expressing green fluorescent protein through irrigation water. Real-time PCR and culture methods were used to quantify the fate of this pathogen in phyllosphere (leaf surface), rhizosphere (volume of soil tightly held by plant roots), and non-rhizosphere soils. A real-time PCR assay was designed with the eae gene of E. coli O157:H7. The probe was incorporated into real-time PCR containing DNA extracted from the phyllosphere, rhizosphere, and non-rhizosphere soils. The detection limit for E. coli O157:H7 quantification by real-time PCR was 1.2 x 10(3) in the rhizosphere, phyllosphere, and non-rhizosphere samples. E. coli O157:H7 concentrations were higher in the rhizosphere than in the non-rhizosphere soils and leaf surfaces, and persisted longer in clay soil. The persistence of E. coli O157:H7 in phyllosphere, rhizosphere, and non-rhizosphere soils over 45 days may play a significant part in the recontamination cycle of produce in the environment. Therefore, the rapidity of the real-time PCR assay may be a useful tool for quantification and monitoring of E. coli O157:H7 in irrigation water and on contaminated fresh produce.  相似文献   

10.
叶际微生物研究进展   总被引:5,自引:0,他引:5  
植物的叶际是一个复杂的生态系统,微生物的生存环境条件严苛。其可被利用的营养成分较少,温湿度波动大。此外,较强的紫外线辐射对于叶际微生物的生存也有很大影响。但是植物叶际却有着丰富的微生物多样性,其中还有许多有益细菌和真菌。它们通过和植物寄主的互作,改善着叶际微生物的栖居环境;其对植物病原体的拮抗亦可提高植物的抗病性。植物叶际的微生物还可以产生激素以促进植物生长,还有一些微生物可以利用农药等污染有机物作为营养物质,在污染物的环境生物修复方面显示巨大的潜力。此外,叶际微生物作为一种生态学指标在生态稳定与环境安全评价中开始发挥显著的作用。  相似文献   

11.
The phyllosphere is a rich and varied microbial community comprising organisms with diverse functional types. Its composition is strongly influenced by both genotypic and environmental factors, many of which can be manipulated by breeding, agronomy and crop protection strategies in an agricultural context. These factors also affect the complex interactions between the microbes, which in turn affect their interaction with their host plant. Whether or not an organism becomes pathogenic and the subsequent expression of disease are also influenced by all these factors. Understanding the population dynamic balance between the organisms of the phyllosphere as an ecological system should lead to new approaches in agronomy, crop protection and breeding that enhance sustainability, where the previously presumed requirement to eliminate putative pathogens is replaced by management that favours dominance of beneficial organisms and contains putative pathogens in asymptomatic or stable states.  相似文献   

12.
To study the effect of microenvironments on potato-associated bacteria, the abundance and diversity of bacteria isolated from the rhizosphere, phyllosphere, endorhiza, and endosphere of field grown potato was analyzed. Culturable bacteria were obtained after plating on R2A medium. The endophytic populations averaged 10(3) and 10(5) CFU/g (fresh wt.) for the endosphere and endorhiza. respectively, which were lower than those for the ectophytic microenvironments, with 10(5) and 10(7) CFU/g (fresh wt.) for the phyllosphere and rhizosphere, respectively. The composition and richness of bacterial species was microenvironment-dependent. The occurrence and diversity of potato-associated bacteria was additionally monitored by a cultivation-independent approach using terminal restriction fragment length polymorphism analysis of 16S rDNA. The patterns obtained revealed a high heterogeneity of community composition and suggested the existence of microenvironment-specific communities. In an approach to measure the antagonistic potential of potato-associated bacteria, a total of 440 bacteria was screened by dual testing for in vitro antagonism towards the soilborne pathogens Verticillium dahliae and Rhizoctonia solani. The proportion of isolates with antagonistic activity was highest for the rhizosphere (10%), followed by the endorhiza (9%), phyllosphere (6%), and endosphere (5%). All 33 fungal antagonists were characterized by testing their in vitro antagonistic mechanisms, including their glucanolytic, chitinolytic, pectinolytic, cellulolytic, and proteolytic activity, and by their BOX-PCR fingerprints. In addition, they were screened for their biocontrol activity against Meloidogyne incognita. Overall, nine isolates belonging to Pseudomonas and Streptomyces species were found to control both fungal pathogens and M. incognita and were therefore considered as promising biological control agents.  相似文献   

13.
Global change is a defining feature of the Anthropocene, the current human-dominated epoch, and poses imminent threats to ecosystem dynamics and services such as plant productivity, biodiversity, and environmental regulation. In this era, terrestrial ecosystems are experiencing perturbations linked to direct habitat modifications as well as indirect effects of global change on species distribution and extreme abiotic conditions. Microorganisms represent an important reservoir of biodiversity that can influence macro-organisms as they face habitat loss, rising atmospheric CO2 concentration, pollution, global warming, and increased frequency of drought. Plant-microbe interactions in the phyllosphere have been shown to support plant growth and increase host resistance to biotic and abiotic stresses. Here, we review how plant-microbe interactions in the phyllosphere can influence host survival and fitness in the context of global change. We highlight evidence that plant-microbe interactions (1) improve urban pollution remediation through the degradation of pollutants such as ultrafine particulate matter, black carbon, and atmospheric hydrocarbons, (2) have contrasting impacts on plant species range shifts through the loss of symbionts or pathogens, and (3) drive plant host adaptation to drought and warming. Finally, we discuss how key community ecology processes could drive plant-microbe interactions facing challenges of the Anthropocene.Subject terms: Climate-change ecology, Microbial ecology, Community ecology, Microbial ecology, Microbiome  相似文献   

14.
Recent studies have provided evolutionary explanations for much of the variation in mortality among human infectious diseases. One gap in this knowledge concerns respiratory tract pathogens transmitted from person to person by direct contact or through environmental contamination. The sit-and-wait hypothesis predicts that virulence should be positively correlated with durability in the external environment because high durability reduces the dependence of transmission on host mobility. Reviewing the epidemiological and medical literature, we confirm this prediction for respiratory tract pathogens of humans. Our results clearly distinguish a high-virulence high-survival group of variola (smallpox) virus, Mycobacterium tuberculosis, Cornynebacterium diphtheriae, Bordetella pertussis, Streptococcus pneumoniae, and influenza virus (where all pathogens have a mean percent mortality > or = 0.01% and mean survival time >10 days) from a low-virulence low-survival group containing ten other pathogens. The correlation between virulence and durability explains three to four times of magnitude of difference in mean percent mortality and mean survival time, using both across-species and phylogenetically controlled analyses. Our findings bear on several areas of active research and public health policy: (1) many pathogens used in the biological control of insects are potential sit-and-wait pathogens as they combine three attributes that are advantageous for pest control: high virulence, long durability after application, and host specificity; (2) emerging pathogens such as the 'hospital superbug' methicillin-resistant Staphylococcus aureus (MRSA) and potential bioweapons pathogens such as smallpox virus and anthrax that are particularly dangerous can be discerned by quantifying their durability; (3) hospital settings and the AIDS pandemic may provide footholds for emerging sit-and-wait pathogens; and (4) studies on food-borne and insect pathogens point to future research considering the potential evolutionary trade-offs and genetic linkages between virulence and durability.  相似文献   

15.
Some bacteria of the Bacillus cereus group are enteropathogens. The first cells encountered by bacteria following oral contamination of the host are epithelial cells. We studied the capacity of these bacteria to adhere to epithelial cells and the consequences of this interaction. We found that cell adhesion is strain dependent and that a strain mutated in flhA, which encodes a component of flagellum-apparatus formation, is impaired in adhesion, suggesting that flagella are important virulence factors. The bacteria are cytotoxic to epithelial cells and induce substantial cytoplasmic and membrane alterations. However, direct contact between cells and bacteria is not required for cytotoxicity. The determinants of this cytotoxicity are secreted and their expression depends on the pleiotropic regulator PlcR. Adhesion and cytotoxicity of B. cereus to epithelial cells might explain the diarrhea caused by these pathogens. Our findings provide further insight into the pathogenicity of B. cereus group members.  相似文献   

16.
Barak JD  Liang AS 《PloS one》2008,3(2):e1657

Background

In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated.

Methodology/Principal Findings

This work examined the role of contaminated soil, the potential for crop debris to act as inoculum from one crop to the next, and any interaction between the seedbourne plant pathogen Xanthomonas campestris pv. vesicatoria and S. enterica on tomato plants. Our results show S. enterica can survive for up to six weeks in fallow soil with the ability to contaminate tomato plants. We found S. enterica can contaminate a subsequent crop via crop debris; however a fallow period between crop incorporation and subsequent seeding can affect contamination patterns. Throughout these studies, populations of S. enterica declined over time and there was no bacterial growth in either the phyllosphere or rhizoplane. The presence of X. campestris pv. vesicatoria on co-colonized tomato plants had no effect on the incidence of S. enterica tomato phyllosphere contamination. However, growth of S. enterica in the tomato phyllosphere occurred on co-colonized plants in the absence of plant disease.

Conclusions/Significance

S. enterica contaminated soil can lead to contamination of the tomato phyllosphere. A six week lag period between soil contamination and tomato seeding did not deter subsequent crop contamination. In the absence of plant disease, presence of the bacterial plant pathogen, X. campestris pv. vesicatoria was beneficial to S. enterica allowing multiplication of the human pathogen population. Any event leading to soil contamination with S. enterica could pose a public health risk with subsequent tomato production, especially in areas prone to bacterial spot disease.  相似文献   

17.
Phenotypic mechanisms that enhance bacterial UVR survival typically include pigmentation and DNA repair mechanisms which provide protection from UVA and UVB wavelengths, respectively. In this study, we examined the contribution of pigmentation to field survival in Clavibacter michiganensis and evaluated differences in population dynamics and leaf colonization strategies. Two C. michiganensis pigment-deficient mutants were significantly reduced in UVA radiation survival in vitro; one of these mutants also exhibited reduced field populations on peanut when compared to the wild-type strain over the course of replicate 25-day experiments. The UVR-tolerant C. michiganensis strains G7.1 and G11.1 maintained larger epiphytic field populations on peanut compared to the UVR-sensitive C. michiganensis T5.1. Epiphytic field populations of C. michiganensis utilized the strategy of solar UVR avoidance during leaf colonization resulting in increased strain survival on leaves after UVC irradiation. These results further demonstrate the importance of UVR tolerance in the ability of bacterial strains to maintain population size in the phyllosphere. However, an examination of several bacterial species from the peanut phyllosphere and a collection of environmental Pseudomonas spp. revealed that sensitivity to UVA and UVC radiation was correlated in some but not all of these bacteria. These results underscore a need to further understand the biological effects of different solar wavelength groups on microbial ecology.  相似文献   

18.
A total of 139 surface water samples from seven lakes and 15 rivers in southwestern Finland were analyzed during five consecutive seasons from autumn 2000 to autumn 2001 for the presence of various enteropathogens (Campylobacter spp., Giardia spp., Cryptosporidium spp., and noroviruses) and fecal indicators (thermotolerant coliforms, Escherichia coli, Clostridium perfringens, and F-RNA bacteriophages) and for physicochemical parameters (turbidity and temperature); this was the first such systematic study. Altogether, 41.0% (57 of 139) of the samples were positive for at least one of the pathogens; 17.3% were positive for Campylobacter spp. (45.8% of the positive samples contained Campylobacter jejuni, 25.0% contained Campylobacter lari, 4.2% contained Campylobacter coli, and 25.0% contained Campylobacter isolates that were not identified), 13.7% were positive for Giardia spp., 10.1% were positive for Cryptosporidium spp., and 9.4% were positive for noroviruses (23.0% of the positive samples contained genogroup I and 77.0% contained genogroup II). The samples were positive for enteropathogens significantly (P < 0.05) less frequently during the winter season than during the other sampling seasons. No significant differences in the prevalence of enteropathogens were found when rivers and lakes were compared. The presence of thermotolerant coliforms, E. coli, and C. perfringens had significant bivariate nonparametric Spearman's rank order correlation coefficients (P < 0.001) with samples that were positive for one or more of the pathogens analyzed. The absence of these indicators in a logistic regression model was found to have significant predictive value (odds ratios, 1.15 x 10(8), 7.57, and 2.74, respectively; P < 0.05) for a sample that was negative for the pathogens analyzed. There were no significant correlations between counts or count levels for thermotolerant coliforms or E. coli or the presence of F-RNA phages and pathogens in the samples analyzed.  相似文献   

19.
Summer meeting 2007 - the problems with fresh produce: an overview   总被引:2,自引:0,他引:2  
In Fall 2006, four separate outbreaks of foodborne illness associated with the consumption of fresh produce occurred in the United States. In follow-up investigations, spinach, lettuce, and tomatoes were identified as the vehicles of illness. Epidemiologic investigations subsequently focused on finding the specific growing regions using traceback records. While the areas most likely involved in the outbreaks have been identified, the specific mode of contamination remains unconfirmed. Suspected risk factors in these cases include: proximity of irrigation wells and surface waterways exposed to faeces from cattle and wildlife; exposure in fields to wild animals and their waste materials; and improperly composted animal manure used as fertilizer. Difficulty in deciphering these and other on-farm routes of contamination is due to the sporadic nature of these events. Hence, evidence to support these contamination modes is based largely on experimental studies in the laboratory and field. Still at issue is the relevance of internalization of pathogens, whether this occurs through the roots and plant vascular tissues of vegetables and fruits or through plant surfaces into cracks and crevices. Potential for these events, conditions under which the events occur, and pathogen survival following these events, are questions that still need to be answered. Answers to these questions will ultimately affect the type of interventions needed for application postharvest. Currently, many chemical and biological interventions can reduce surface pathogens and minimize cross-contamination, however, they are largely ineffective on internalized pathogens. In the event internalization is a significant route of contamination in the field, physical interventions (irradiation and high pressure) may be needed to minimize risk. Ultimately, risk assessment studies will be useful tools in developing risk management strategies for the produce industry.  相似文献   

20.
Plant roots and leaves can be colonized by human pathogenic bacteria, and accordingly some of the largest outbreaks of foodborne illness have been associated with salad leaves contaminated by E. coli O157. Integrated disease management strategies often exploit cultivar resistance to provide a level of protection from economically important plant pathogens; however, there is limited evidence of whether the genotype of the plant can also influence the extent of E. coli O157 colonization. To determine cultivar-specific effects on colonization by E. coli O157, we used 12 different cultivars of lettuce inoculated with a chromosomally lux-marked strain of E. coli O157:H7. Lettuce seedlings grown gnotobiotically in vitro did exhibit a differential cultivar-specific response to E. coli O157 colonization, although importantly there was no relationship between metabolic activity (measured as bioluminescence) and cell numbers. Metabolic activity was highest and lowest on the cultivars Vaila-winter gem and Dazzle respectively, and much higher in endophytic and tightly bound cells than in epiphytic and loosely bound cells. The cultivar effect was also evident in the rhizosphere of plants grown in compost, which suggests that cultivar-specific root exudate influences E. coli O157 activity. However, the influence of cultivar in the rhizosphere was the opposite to that in the phyllosphere, and the higher number and activity of E. coli O157 cells in the rhizosphere may be a consequence of them not being able to gain entry to the plant as effectively. If metabolic activity in the phyllosphere corresponds to a more prepared state of infectivity during human consumption, leaf internalization of E. coli O157 may pose more of a public health risk than leaf surface contamination alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号