首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ariga T 《Bio Systems》2008,93(1-2):68-77
F(1), a rotational molecular motor, shows strong cooperativity during ATP catalysis when driving the rotation of the central gamma subunit surrounded by the alpha(3)beta(3) subunits. To understand how the three catalytic beta subunits cooperate to drive rotation, we made a hybrid F(1) containing one or two mutant beta subunits with altered catalytic kinetics and observed its rotations. Analysis of the asymmetric stepwise rotations elucidated a concerted nature inside the F(1) complex where all three beta subunits participate to rotate the gamma subunit with a 120 degrees phase. In addition, observing hybrid F(1) rotations at various solution conditions, such as ADP, P(i) and the ATPase inhibitor 2,3-butanedione 2-monoxime (BDM) provides additional information for each elementary event. This novel experimental system, which combines single molecule observations and biochemical methods, enables us to dynamically visualize the catalytic coordination inside active enzymes and shed light on how biological machines provide unidirectional functions and rectify information from stochastic reactions.  相似文献   

2.
Xu L 《Biochimica et biophysica acta》2008,1777(11):1422-1431
The enzyme F(1)-ATPase is a rotary nanomotor in which the central gamma subunit rotates inside the cavity made of alpha(3)beta(3) subunits. The experiments showed that the rotation proceeds in steps of 120 degrees and each 120 degrees step consists of 80 degrees and 40 degrees substeps. Here the Author proposes a stochastic wave mechanics of the F(1)-ATPase motor and combines it with the structure-based kinetics of the F(1)-ATPase to form a chemomechanic coupled model. The model can reproduce quantitatively and explain the experimental observations about the F(1) motor. Using the model, several rate-limited situations about gamma subunit rotation are proposed, the effects of the friction and the load on the substeps are investigated and the chemomechanic coupled time during ATP hydrolysis cycle is determined.  相似文献   

3.
F(1)-ATPase is an ATP hydrolysis-driven motor in which the gamma subunit rotates in the stator cylinder alpha(3)beta(3). To know the coordination of three catalytic beta subunits during catalysis, hybrid F(1)-ATPases, each containing one, two, or three "slow" mutant beta subunits that bind ATP very slowly, were prepared, and the rotations were observed with a single molecule level. Each hybrid made one, two, or three steps per 360 degrees revolution, respectively, at 5 microm ATP where the wild-type enzyme rotated continuously without step under the same observing conditions. The observed dwell times of the steps are explained by the slow binding rate of ATP. Except for the steps, properties of rotation, such as the torque forces exerted during rotary movement, were not significantly changed from those of the wild-type enzyme. Thus, it appears that the presence of the slow beta subunit(s) does not seriously affect other normal beta subunit(s) in the same F(1)-ATPase molecule and that the order of sequential catalytic events is faithfully maintained even when ATP binding to one or two of the catalytic sites is retarded.  相似文献   

4.
Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase   总被引:1,自引:0,他引:1  
Rotation of the F(0)F(1) ATP synthase gamma subunit drives each of the three catalytic sites through their reaction pathways. The enzyme completes three cycles and synthesizes or hydrolyzes three ATP for each 360 degrees rotation of the gamma subunit. Mutagenesis studies have yielded considerable information on the roles of interactions between the rotor gamma subunit and the catalytic beta subunits. Amino acid substitutions, such as replacement of the conserved gammaMet-23 by Lys, cause altered interactions between gamma and beta subunits that have dramatic effects on the transition state of the steady state ATP synthesis and hydrolysis reactions. The mutations also perturb transmission of specific conformational information between subunits which is important for efficient conversion of energy between rotation and catalysis, and render the coupling between catalysis and transport inefficient. Amino acid replacements in the transport domain also affect the steady state catalytic transition state indicating that rotation is involved in coupling to transport.  相似文献   

5.
H(+)-transporting, F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the gamma and epsilon subunits of F(1). In this essay we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp(61) centered in the second transmembrane helix (TMH). A model for the structural organization of the c(10) oligomer in F(o) was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H(+)-carrying carboxyl of subunit c is occluded between neighboring subunits of the c(10) oligomer and that two c subunits pack in a "front-to-back" manner to form the H(+) (cation) binding site. In order for protons to gain access to Asp(61) during the protonation/deprotonation cycle, we propose that the outer, Asp(61)-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp(61) protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp(61). The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c(10) oligomer during coupled synthesis of ATP.  相似文献   

6.
7.
F(1)-ATPase is a rotary molecular motor in which unidirectional rotation of the central gamma subunit is powered by ATP hydrolysis in three catalytic sites arranged 120 degrees apart around gamma. To study how hydrolysis reactions produce mechanical rotation, we observed rotation under an optical microscope to see which of the three sites bound and released a fluorescent ATP analog. Assuming that the analog mimics authentic ATP, the following scheme emerges: (i) in the ATP-waiting state, one site, dictated by the orientation of gamma, is empty, whereas the other two bind a nucleotide; (ii) ATP binding to the empty site drives an approximately 80 degrees rotation of gamma; (iii) this triggers a reaction(s), hydrolysis and/or phosphate release, but not ADP release in the site that bound ATP one step earlier; (iv) completion of this reaction induces further approximately 40 degrees rotation.  相似文献   

8.
F(1)-ATPase, a water-soluble portion of F(o)F(1)-ATP synthase, is a rotary motor driven by ATP hydrolysis. The central gamma-subunit rotates in the alpha(3)beta(3) cylinder by repeating four stages of rotation: ATP-binding dwell, rapid 80 degrees substep rotation, catalytic dwell, and rapid 40 degrees substep rotation. In the catalytic dwell, at least two catalytic reactions occur-cleavage of the enzyme-bound ATP and presumably release of the hydrolyzed product(s) from the enzyme-but we found that a slow ATP cleavage mutant of F(1)-ATPase from thermophilic Bacillus PS3 rotates at low ATP concentration without substeps and the catalytic dwell. Analysis indicates that in this alternative reaction pathway the two catalytic reactions occur during the preceding long ATP-binding dwell. Thus, F(1)-ATPase can operate through (at least) two competing reaction pathways, not necessarily through a simple consecutive reaction.  相似文献   

9.
The gamma subunit of the ATP synthase F(1) sector rotates at the center of the alpha(3)beta(3) hexamer during ATP hydrolysis. A gold bead (40-200 nm diameter) was attached to the gamma subunit of Escherichia coli F(1), and then its ATP hydrolysis-dependent rotation was studied. The rotation speeds were variable, showing stochastic fluctuation. The high-speed rates of 40- and 60-nm beads were essentially similar: 721 and 671 rps (revolutions/s), respectively. The average rate of 60-nm beads was 381 rps, which is approximately 13-fold faster than that expected from the steady-state ATPase turnover number. These results indicate that the F(1) sector rotates much faster than expected from the bulk of ATPase activity, and that approximately 10% of the F(1) molecules are active on the millisecond time scale. Furthermore, the real ATP turnover number (number of ATP molecules converted to ADP and phosphate/s), as a single molecule, is variable during a short period. The epsilon subunit inhibited rotation and ATPase, whereas epsilon fused through its carboxyl terminus to cytochrome b(562) showed no effect. The epsilon subunit significantly increased the pausing time during rotation. Stochastic fluctuation of catalysis may be a general property of an enzyme, although its understanding requires combining studies of steady-state kinetics and single molecule observation.  相似文献   

10.
A complex of gamma, epsilon, and c subunits rotates in ATP synthase (FoF(1)) coupled with proton transport. A gold bead connected to the gamma subunit of the Escherichia coli F(1) sector exhibited stochastic rotation, confirming a previous study (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126-4131). A similar approach was taken for mutations in the beta subunit key region; consistent with its bulk phase ATPase activities, F(1) with the Ser-174 to Phe substitution (betaS174F) exhibited a slower single revolution time (time required for 360 degree revolution) and paused almost 10 times longer than the wild type at one of the three 120 degrees positions during the stepped revolution. The pause positions were probably not at the "ATP waiting" dwell but at the "ATP hydrolysis/product release" dwell, since the ATP concentration used for the assay was approximately 30-fold higher than the K(m) value for ATP. A betaGly-149 to Ala substitution in the phosphate binding P-loop suppressed the defect of betaS174F. The revertant (betaG149A/betaS174F) exhibited similar rotation to the wild type, except that it showed long pauses less frequently. Essentially the same results were obtained with the Ser-174 to Leu substitution and the corresponding revertant betaG149A/betaS174L. These results indicate that the domain between beta-sheet 4 (betaSer-174) and P-loop (betaGly-149) is important to drive rotation.  相似文献   

11.
During ATP hydrolysis, the gammaepsilon c10 complex (gamma and epsilon subunits and a c subunit ring formed from 10 monomers) of F0F1 ATPase (ATP synthase) rotates relative to the alpha3beta3delta ab2 complex, leading to proton transport through the interface between the a subunit and the c subunit ring. In this study, we replaced the two pertinent residues for proton transport, cAsp-61 and aArg-210 of the c and a subunits, respectively. The mutant enzymes exhibited lower ATPase activities than that of the wild type but exhibited ATP-dependent rotation in planar membranes, in which their original assemblies are maintained. The mutant enzymes were defective in proton transport, as shown previously. These results suggest that proton transport can be separated from rotation in ATP hydrolysis, although rotation ensures continuous proton transport by bringing the cAsp-61 and aArg-210 residues into the correct interacting positions.  相似文献   

12.
ATP synthases (F(0)F(1)-ATPases) mechanically couple ion flow through the membrane-intrinsic portion, F(0), to ATP synthesis within the peripheral portion, F(1). The coupling most probably occurs through the rotation of a central rotor (subunits c(10)epsilon gamma) relative to the stator (subunits ab(2)delta(alpha beta)(3)). The translocation of protons is conceived to involve the rotation of the ring of c subunits (the c oligomer) containing the essential acidic residue cD61 against subunits ab(2). In line with this notion, the mutants cD61N and cD61G have been previously reported to lack proton translocation. However, it has been surprising that the membrane-bound mutated holoenzyme hydrolyzed ATP but without translocating protons. Using detergent-solubilized and immobilized EF(0)F(1) and by application of the microvideographic assay for rotation, we found that the c oligomer, which carried a fluorescent actin filament, rotates in the presence of ATP in the mutant cD61N just as in the wild type enzyme. This observation excluded slippage among subunit gamma, the central rotary shaft, and the c oligomer and suggested free rotation without proton pumping between the oligomer and subunit a in the membrane-bound enzyme.  相似文献   

13.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

14.
In the crystal structure of mitochondrial F1-ATPase, two beta subunits with a bound Mg-nucleotide are in "closed" conformations, whereas the third beta subunit without bound nucleotide is in an "open" conformation. In this "CCO" (beta-closed beta-closed beta-open) conformational state, Ile-390s of the two closed beta subunits, even though they are separated by an intervening alpha subunit, have a direct contact. We replaced the equivalent Ile of the alpha3beta3gamma subcomplex of thermophilic F1-ATPase with Cys and observed the formation of the beta-beta cross-link through a disulfide bond. The analysis of conditions required for the cross-link formation indicates that: (i) F1-ATPase takes the CCO conformation when two catalytic sites are filled with Mg-nucleotide, (ii) intermediate(s) with the CCO conformation are generated during catalytic cycle, (iii) the Mg-ADP inhibited form is in the CCO conformation, and (iv) F1-ATPase dwells in conformational state(s) other than CCO when only one (or none) of catalytic sites is filled by Mg-nucleotide or when catalytic sites are filled by Mg2+-free nucleotide. The alpha3beta3gamma subcomplex containing the beta-beta cross-link retained the activity of uni-site catalysis but lost that of multiple catalytic turnover, suggesting that open-closed transition of beta subunits is required for the rotation of gamma subunit but not for hydrolysis of a single ATP.  相似文献   

15.
F-ATPases synthesize ATP from ADP and phosphate coupled with an electrochemical proton gradient in bacterial or mitochondrial membranes and can hydrolyse ATP to form the gradient. F-ATPases consist of a catalytic F1 and proton channel F0 formed from the alpha3beta3gammadelta and ab2c10 subunit complexes, respectively. The rotation of gammaepsilonc10 couples catalyses and proton transport. Consistent with the threefold symmetry of the alpha3beta3 catalytic hexamer, 120 degrees stepped revolution has been observed, each step being divided into two substeps. The ATP-dependent revolution exhibited stochastic fluctuation and was driven by conformation transmission of the beta subunit (phosphate-binding P-loop/alpha-helix B/loop/beta-sheet4). Recent results regarding mechanically driven ATP synthesis finally proved the role of rotation in energy coupling.  相似文献   

16.
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.  相似文献   

17.
Subunit gamma of the ATP synthase F(1) sector is located at the center of the alpha(3)beta(3) hexamer and rotates unidirectionally during ATP hydrolysis, generating the rotational torque of approximately 45 pN.nm. A mutant F(1) with the betaSer-174 to Phe substitution (betaS174F) in the beta subunit generated lower torque ( approximately 17 pN.nm), indicating that betaS174F is mechanically defective, the first such mutant reported. The defective rotation of betaS174F was suppressed by a second-site mutation, betaGly-149 to Ala, betaIle-163 to Ala, or betaIle-166 to Ala in the same subunit, but not by betaLeu-238 to Ala. These results suggest that the region between betaGly-149 and betaSer-174 plays an important role in the coupling between ATP hydrolysis and mechanical work.  相似文献   

18.
ATP synthase is conceived as a rotatory engine with two reversible drives, the proton-transporting membrane portion, F0, and the catalytic peripheral portion, F1. They are mounted on a central shaft (subunit gamma) and held together by an eccentric bearing. It is established that the hydrolysis of three molecules of ATP in F1 drives the shaft over a full circle in three steps of 120 degrees each. Proton flow through F0 probably generates a 12-stepped rotation of the shaft so that four proton-translocating steps of 30 degrees each drive the synthesis of one molecule of ATP. We addressed the elasticity of the transmission between F0 and F1 in a model where the four smaller steps in F0 load a torsional spring which is only released under liberation of ATP from F1. The kinetic model of an elastic ATP synthase described a wealth of published data on the synthesis/hydrolysis of ATP by F0F1 and on proton conduction by F0 as function of the pH and the protonmotive force. The pK values of the proton-carrying group interacting with the acidic and basic sides of the membrane were estimated as 5.3-6.4 and 8.0-8.3, respectively.  相似文献   

19.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In F1-ATPase, the rotation of the central axis subunit gamma relative to the surrounding alpha3beta3 subunits is coupled to ATP hydrolysis. We previously reported that the introduced regulatory region of the gamma subunit of chloroplast F1-ATPase can modulate rotation of the gamma subunit of the thermophilic bacterial F1-ATPase (Bald, D., Noji, H., Yoshida, M., Hirono-Hara, Y., and Hisabori, T. (2001) J. Biol. Chem. 276, 39505-39507). The attenuated enzyme activity of this chimeric enzyme under oxidizing conditions was characterized by frequent and long pauses of rotation of gamma. In this study, we report an inverse regulation of the gamma subunit rotation in the newly engineered F1-chimeric complex whose three negatively charged residues Glu210-Asp211-Glu212 adjacent to two cysteine residues of the regulatory region derived from chloroplast F1-ATPase gamma were deleted. ATP hydrolysis activity of the mutant complex was stimulated up to 2-fold by the formation of the disulfide bond at the regulatory region by oxidation. We successfully observed inverse redox switching of rotation of gamma using this mutant complex. The complex exhibited long and frequent pauses in its gamma rotation when reduced, but the rotation rates between pauses remained unaltered. Hence, the suppression or activation of the redox-sensitive F1-ATPase can be explained in terms of the change in the rotation behavior at a single molecule level. These results obtained by the single molecule analysis of the redox regulation provide further insights into the regulation mechanism of the rotary enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号