首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Patatin class I promoter (B33 promoter) is a tissue-specific potato (Solanum tuberosum L.) promoter expressing the patatin gene mainly in tubers. However, it can be induced in other organs by sucrose or light. We compared the activity of this promoter fused with the reporter gene during heterological expression in B33::GUS transgenic arabidopsis (Arabidopsis thaliana L.) plants and homological expression of the same DNA construct in potato. Promoter activity was estimated from quantification of β-glucuronidase (GUS) activity. It was shown that, during heterological expression in arabidopsis seedlings, B33 promoter manifested a tissue-specificity and inducibility, although in a different manner than during homological expression in potato. In noninduced arabidopsis seedlings, B33 promoter was most active in the roots, whereas, after induction with sucrose treatment, it became most active in cotyledons. 10 mM sucrose was sufficient for a manifold activation of B33 promoter in intact seedlings. The degree of B33 promoter induction by sucrose in arabidopsis seedlings was strictly organ-specific and increased in the following sequence: root < hypocotyl < cotyledons. 150–200 mM sucrose enhanced B33 promoter activity in cotyledons by 200 to 300 times, i.e., much stronger than in potato organs. Glucose and fructose were less efficient than sucrose. Phytohormones affecting tuber formation in potato (gibberellins, auxins, and cytokinins) did not affect significantly B33 promoter activity in arabidopsis. A lag period of approximately 6 h preceded sucrose-induced B33 promoter activation. This indicates that the patatin promoter is not the primary target for the sucrose signal. The quantitative examination of heterological expression of patatin class I promoter further clarifies its basic functional characteristics and permits a better prognosis of its behavior after transferring into other plant species.  相似文献   

3.
Summary A new member of the patatin gene family belonging to the class II subfamily was isolated and characterized by DNA sequencing. In order to study the expression profile of this gene, the promoter was fused to the -glucuronidase gene and transferred to potato and tobacco. Histochemical analysis revealed high expression in a few defined cells in potato tubers and in a specific layer of both potato and tobacco root tips. In contrast to the developmentally and metabolically regulated class I patatin gene B33 this gene was not inducible by elevated levels of sucrose. Expression of this chimaeric gene was also found in callus and suspension cultures of potato.  相似文献   

4.
5.
6.
7.
Summary The 5-upstream region of the class I patatin gene B33 directs strong expression of the -glucuronidase (GUS) reporter gene in potato tubers and in leaves treated with sucrose. Cis-acting elements affecting specificity and level of expression were identified by deletion analysis in transgenic potato plants. A putative tuber-specific element is located downstream from position –195. Nuclear proteins present in leaf and tuber extracts bind specifically to a conserved AT rich motif within this region. A DNA fragment between –183 and –143, including the binding site is, however, not able to enhance the expression of a truncated 35S promoter from cauliflower mosaic virus. Independent positive elements contributing to a 100-fold increase relative to the basic tuber-specific element are located between –228 and –195; –736 and –509, –930 and –736 and –1512 and –951. Sucrose inducibility is controlled by sequences downstream of position –228, indicating that the tuber-specific and sucrose-inducible elements are in close proximity.  相似文献   

8.
9.
10.
11.
The expression of tobacco class I chitinase genes is effectively induced by a fungal elicitor in suspension-cultured cells. A putative cis-acting elicitor-responsive element (ElRE) was identified previously in the promoter of the class I chitinase gene, CHN50. To confirm that the ElRE sequence directly mediates the regulation of gene expression by the elicitor, I constructed a deleted promoter that controlled a reporter gene for -glucuronidase (gus) and examined expression of the construct in transgenic tobacco calli. Both expression and responsiveness to the elicitor disappeared, when the region of the promoter that included the ElRE sequence had been deleted. To define the specific sequence within the ElRE that interacts with nuclear factor(s), a gel mobility shift assay was performed with wild-type and mutated elements. Results of binding and competition experiments revealed that the nuclear factor(s) bound specifically to the sequence motif, -534GGTCANNNAGTC-523, and that both of the repeated sites were involved in the binding of the nuclear factors. Moreover, the binding was influenced by the distance between the two repeated sites. In addition, the elicitor-inducible activity of the binding to this motif was reduced in nuclear extracts prepared from the cells that had been treated with cycloheximide or staurosporine.  相似文献   

12.
The nucleotide sequence data reported in this Papershave been submitted to the GenBank, EMBL, and DDBJ nucleotide sequence databases and have been assigned the accession numbers X79719 (RT1.A 1), X79720 (RT1.C 1), and X79721 (RT12.5)  相似文献   

13.
14.
15.
16.
Following the construction of a series of pSV2-cat derived plasmids containing the chloramphenicol acetyltransferase (CAT) gene under the control of a eukaryotic trout protamine promoter, it was noted that Escherichia coli, transformed with these plasmids, developed resistance to chloramphenicol (CM). This result suggested that the eukaryotic trout protamine promoter possessed significant prokaryotic promoter activity. Modification of the trout protamine promoter region by removing the region containing the eukaryotic Goldberg-Hogness box in the plasmid p525-cat increased the expression of the CAT gene almost to the wild-type level and conferred strong CM resistance. Sequence comparisons of the plasmid series indicate that prokaryotic promoter elements are present in the trout protamine promoter and that their similarity to the prokaryotic promoter consensus sequences and the distance between the two elements is more favourable in p525-cat, the plasmid which confers the greatest CM resistance.  相似文献   

17.
Wounding hybrid poplar (Populus trichocarpa × P. deltoides) trees results in the expression of novel wound-inducible (win) mRNAs thought to encode proteins involved in defense against pests and pathogens. Members of thewin6 gene family encode acidic multi-domain chitinases, with combined structure and charge characteristics that differ from previously described chitinases.Win6 expression has been shown to occur in pooled unwounded leaves of a wounded (on multiple leaves) poplar plant. Here we demonstrate that wounding a single leaf induceswin6 expression locally, in the wounded leaf, and remotely, in specific unwounded leaves with strong vascular connections to the wounded leaf. We also demonstrate that awin6 promoter--glucuronidase (GUS) gene fusion (win6-GUS) responds to wounding locally and remotely in transgenic tobacco. These data indicate that the poplarwin6 promoter has regulatory elements that are responsive to wound signals in the heterologous host. In addition,win6-GUS is developmentally activated in unwounded young leaves and floral tissues of transgenic tobacco. Similar developmental expression patterns are found to occur forwin6 in poplar trees, demonstrating that a herbaceous plant can serve as a host for woody tree transgene analysis and can accurately predict expression patterns in tree tissues (e.g. flowers) that would be difficult to study in free-living trees.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号