首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chimeric gene consisting of 1.3 kb of the 5' regulatory region of a member of the potato proteinase inhibitor II gene family, the coding region of the bacterial β-glucuronidase (GUS) gene and 260 bp of the proteinase inhibitor II 3'-untranslated region containing the poly(A) addition site was introduced into potato and tobacco by Agrobacterium tumefaciens mediated transformation. Analysis of transgenic plants demonstrates systemic, wound-inducible expression of this gene in stem and leaves of potato and tobacco. Constitutive expression was found in stolons and tubers of non-wounded potato plants. Histochemical experiments based on the enzymatic activity of the GUS protein indicate an association of the proteinase inhibitor II promoter activity with vascular tissue in wounded as well as in systemically induced non-wounded leaves, petioles, potato stems and in developing tubers. These data prove that one single member of the proteinase inhibitor II gene family contains cis-active elements, which are able to respond to both developmental and environmental signals. Furthermore they support the hypothesis of an inducing signal (previously called proteinase inhibitor inducing factor), which is released at the wound site and subsequently transported to non-wounded parts of the plant via the vascular system from where it is released to the surrounding tissue.  相似文献   

2.
In potato tubers two starch phosphorylase isozymes, types L and H, have been described and are believed to be responsible for the complete starch breakdown in this tissue. Type L has been localized in amyloplasts, whereas type H is located within the cytosol. In order to investigate whether the same isozymes are also present in potato leaf tissue a cDNA expression library from potato leaves was screened using a monoclonal antibody recognizing both isozyme forms. Besides the already described tuber L-type isozyme a cDNA clone encoding a second L-type isozyme was isolated. The 3171 nucleotide long cDNA clone contains an uninterrupted open reading frame of 2922 nucleotides which encodes a polypeptide of 974 amino acids. Sequence comparison between both L-type isozymes on the amino acid level showed that the polypeptides are highly homologous to each other, reaching 81–84% identity over most parts of the polypeptide. However the regions containing the transit peptide (amino acids 1–81) and the insertion sequence (amino acids 463–570) are highly diverse, reaching identities of only 22.0% and 29.0% respectively.Northern analysis revealed that both forms are differentially expressed. The steady-state mRNA levels of the tuber L-type isozyme accumulates strongly in potato tubers and only weakly in leaf tissues, whereas the mRNA of the leaf L-type isozyme accumulates in both tissues to the same extent. Constitutive expression of an antisense RNA specific for the leaf L-type gene resulted in a strong reduction of starch phosphorylase L-type activity in leaf tissue, but had only sparse effects in potato tuber tissues. Determination of the leaf starch content revealed that antisense repression of the starch phosphorylase activity has no significant influence on starch accumulation in leaves of transgenic potato plants. This result indicated that different L-type genes are responsible for the starch phosphorylase activity in different tissues, but the function of the different enzymes remains unclear.  相似文献   

3.
The acceptability of potatoes for processing chips and French fries is largely dependent on the color of the finished product. Most potato cultivars and varieties stored at temperatures below 9–10 °C are subjected to low temperature sweetening (LTS) which result in the production of bitter-tasting, dark colored chips and French fries which are unacceptable to consumers. However, storing tubers at low temperatures (i.e., <10 °C) has many advantages such as lowered weight loss during storage, natural control of sprouting, and reduction/elimination of chemical sprout inhibitors. Our earlier research results on LTS suggested a role for pyruvate decarboxylase (PDC) in LTS-tolerance. In the present study, the role of PDC was examined whereby the potato variety Snowden was transformed with Arabidopsis cold-inducible pyruvate decarboxylase gene 1 (AtPDC1) under the control of promoter rd29A. Two transgenic plants were selected and storage studies were conducted on tubers harvested from one of the transgenic lines grown under green house conditions. Transgenic tubers showed higher Agtron chip color score indicating lighter chip and lower reducing sugar and sucrose concentrations compared to the untransformed tubers during the storage periods studied at 12 °C and 5 °C. These results suggest that overexpression of pyruvate decarboxylase gene resulted in low temperature sweetening tolerance in the transgenic Snowden.  相似文献   

4.
5.
Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed transgenic potato plants (Solanum tuberosum L. cv. Taedong Valley) over-expressing strawberry GalUR gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the GalUR gene in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid (AsA) levels in transgenic tubers were determined by high-performance liquid chromatography (HPLC). The over-expression of GalUR resulted in 1.6–2-fold increase in AsA in transgenic potato and the levels of AsA were positively correlated with increased GalUR activity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen (MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of GalUR gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control.  相似文献   

6.
Targeted compositional analysis was carried out on transgenic potato tubers of either cultivar (cv.) Record or cv. Desirée to assess the potential for unintended effects caused by the genetic modification process. The range of transgenic lines analysed included those modified in primary carbohydrate metabolism, polyamine biosynthesis and glycoprotein processing. Controls included wildtype tubers, tubers produced from plants regenerated through tissue culture (including a callus phase) and tubers derived from transformation with the ‘empty vector’ i.e. no specific target gene included (with the exception of the kanamycin resistance gene as a selectable marker). Metabolite analysis included soluble carbohydrates, glycoalkaloids, vitamin C, total nitrogen and fatty acids. Trypsin inhibitor activity was also assayed. These cover the major compounds recommended by the OECD in their Consensus Document on Compositional Considerations for New Varieties of Potatoes: Key Food and Feed Nutrients, Anti-Nutrients and Toxicants (2002). Data was statistically analysed using analysis of variance (ANOVA) for individual compounds and, where applicable, principal component analysis (PCA). In general, targeted compositional analysis revealed no consistent differences between GM lines and respective controls. No construct specifically induced unintended effects. Statistically significant differences between wildtype controls and specific GM lines did occur but appeared to be random and not associated with any specific construct. Indeed such significant differences were also found between wildtypes and both tissue culture derived tubers and tubers derived from transformation with the empty vector. This raises the possibility that somaclonal variation (known to occur significantly in potato, depending on genotype) may be responsible for an unknown proportion of any differences observed between specific GM lines and the wildtype. The most obvious differences seen in GC-MS profiles were between the two potato varieties used in the study.  相似文献   

7.
The introduction of the thaumatin gene into potato plants was accompanied by a decrease in the activity of H(+)-ATPase in the plasmalemma (PL) of tuber cells. When tubers were released from dormancy, the enzyme was activated in the tuber cells of both the original and transgenic plants. Experiments performed in vitro demonstrated that sensitivities to ambiol (AM) and jasmonic acid (JA) of H(+)-ATPase in the PL of tubers from the original plants were lower after the release from a period of deep dormancy. In preparations from the tubers of transgenic plants, the situation was reversed. The differences between the activities of H(+)-ATPase in the PL preparations produced from the original and transgenic tubers that sprouted under the action of AM and JA were detected. Thus, the overexpression of the thaumatin gene in potato plants changed the properties of H(+)-ATPase from PL.  相似文献   

8.
The introduction of the thaumatin gene into potato plants was accompanied by a decrease in the activity of H+-ATPase in the plasmalemma (PL) of tuber cells. When tubers were released from dormancy, the enzyme was activated in the tuber cells of both the original and transgenic plants. Experiments performed in vitro demonstrated that sensitivities to ambiol (AM) and jasmonic acid (JA) of H+-ATPase in the PL of tubers from the original plants were lower after the release from a period of deep dormancy. In preparations from the tubers of transgenic plants, the situation was reversed. The differences between the activities of H+-ATPase in the PL preparations produced from the original and transgenic tubers that sprouted under the action of AM and JA were detected. Thus, the overexpression of the thaumatin gene in potato plants changed the properties of H+-ATPase from PL.  相似文献   

9.
The synthesis of amylose in amyloplasts is catalyzed by granule-bound starch synthase (GBSS). GBSS gene expression was inhibited via antisense RNA in Agrobacterium rhizogenes-transformed potato plants. Analysis of starch production and starch granule composition in transgenic tubers revealed that reduction of GBSS activity always resulted in a reduction of the production of amylose. Field experiments, performed over a 2-year period, showed that stable inhibition of GBSS gene expression can be obtained. Microscopic evaluation of iodine-stained starch granules was shown to be a sensitive system for qualitative and quantitative examination of amylose formation in starch granules of transgenic potato tubers. In plants showing inhibition of GBSS gene expression, the reduced amylose content in tuber starch was not a consequence of a lower amylose content throughout the entire starch granule. Starch granules of transgenic tubers were found to contain amylose at a percentage similar to wild-type starch in a core of varying size at the hilum of each granule. This indicated that reduced GBSS gene expression results in amylose formation in a restricted zone of the granules. The size of this zone is suggested to be dependent on the GBSS protein level. During development of the granules, the available GBSS protein is thought to become limiting, resulting in the formation of starch that lacks amylose. RNA gel blot analysis of tuber tissue showed that inhibition of GBSS gene expression resulted in a reduced GBSS mRNA level but did not affect the expression level of other starch synthesizing enzymes. Antisense RNA could only be detected in leaf tissue of the transgenic plants.  相似文献   

10.
A DNA clone encoding a cathepsin D inhibitor CathInh was isolated from a potato genomic library using a CathInh cDNA as hybridization probe. The amino acid sequence of the coding region is nearly identical with a CathInh cDNA and CathInh proteins previously isolated from a tuber-specific cDNA library and from tubers, respectively. Analysis of GUS activity resulting from expression of chimeric CathInh promoter-GUS genes in transgenic potato plants revealed expression exclusively confined to potato tubers. No GUS activity could be detected in any other organ of the transgenic plants either constitutively or after wounding or treatment with abscisic and jasmonic acid (JA). Interestingly, part of the promoter region of the CathInh gene, essential for GUS activity in tubers, shows striking similarity to promoter regions of tuber-specific class I patatin genes.  相似文献   

11.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

12.
Stable performance of insect‐resistant transgenic plants across field seasons and between plant organs damaged by the insect pest is critical for management of this resistance in the field. To evaluate this, potato (Solanum tuberosum) lines transgenic for a cry1Ac9 gene with resistance to potato tuber moth (Phthorimaea operculella) were established in the field during the southern hemisphere summers of 1997/98, 1998/99 and 1999/00 as small field plots, each of 10 plants. Replicate plots of the non‐transgenic parent cultivars (at least one for every three independently derived transgenic lines) were planted randomly throughout the trials. Field‐grown foliage was challenged with larvae in the laboratory and a growth index (GI) was calculated for recovered larvae from each transgenic and non‐transgenic potato line. Larval growth on young and mature leaves, and on newly harvested or stored tubers was also measured in the laboratory. Foliage from the transgenic lines inhibited larval growth in all seasons tested. For both control and transgenic lines, larvae had slightly lower GIs when reared on mature leaves compared with young leaves, although the correlation between mean GI for young and mature transgenic leaves was high (r = 0.97). The correlation between the mean GIs of larvae on newly harvested tubers and on those stored for 5 months was also high (r = 1.0). However, the GIs of larvae on newly harvested transgenic tubers were larger than on transgenic tubers stored for 5 months. The relative growth indices (RGI = mean GI/number days before final weighing) of larvae reared on newly harvested tubers from transgenic lines were generally higher than those from young transgenic foliage, while the RGIs of larvae reared on non‐transgenic tubers were slightly lower than those fed non‐transgenic foliage. The correlation between mean RGIs of larvae fed tubers or foliage was 0.62. The transgenic potato lines exhibited stable resistance to larvae across field seasons, between affected plant organs, and between plant organs of different ages.  相似文献   

13.
The location of GUS gene expression under control of T-cyt gene (gene 4 of T- DNA coding isopenteryl transferase) 5′ region in transgenic tobacco (Nicotiana tabacum cv. W38) and potato (Solanum tuberosum L, cv. Desiree) plants was examined with biochemical assays. The results showed differential distribution in various organs and different cell types. The highest levels of GUS activity were found in tobacco stem where axillary bud was initiated and potato buds on tubers. Moreover, the expression of T-cyt promoter/GUS was found to be inducible in transgenic tobacco stem with cytokinin rather than auxin treatment. Additionally, the level of expression was high in the wounded leaf of transgenic potato. It was suggested that T-cyt promoter may be selectively induced by some exogenous plant hormones.  相似文献   

14.
A fluorogenic (TaqMan) PCR assay was developed to detect Ralstonia solanacearum strains. Two fluorogenic probes were utilized in a multiplex reaction; one broad-range probe (RS) detected all biovars of R. solanacearum, and a second more specific probe (B2) detected only biovar 2A. Amplification of the target was measured by the 5′ nuclease activity of Taq DNA polymerase on each probe, resulting in emission of fluorescence. TaqMan PCR was performed with DNA extracted from 42 R. solanacearum and genetically or serologically related strains to demonstrate the specificity of the assay. In pure cultures, detection of R. solanacearum to ≥102 cells ml−1 was achieved. Sensitivity decreased when TaqMan PCR was performed with inoculated potato tissue extracts, prepared by currently recommended extraction procedures. A third fluorogenic probe (COX), designed with the potato cytochrome oxidase gene sequence, was also developed for use as an internal PCR control and was shown to detect potato DNA in an RS-COX multiplex TaqMan PCR with infected potato tissue. The specificity and sensitivity of the assay, combined with high speed, robustness, reliability, and the possibility of automating the technique, offer potential advantages in routine indexing of potato tubers and other plant material for the presence of R. solanacearum.  相似文献   

15.
16.
The aim of this work was to investigate the effect of decreased activity of lactate dehydrogenase (EC 1.1.1.27; LDH) on lactate metabolism in potato tubers. By expressing a cDNA‐encoding potato tuber LDH in the antisense orientation, we generated transgenic potato plants with a preferential decrease in two of the five isozymes of LDH. Surprisingly, transgenic tubers grown under normoxic conditions did not contain less lactate, but rather instead contained approximately two‐fold more lactate than control tubers. This result is explicable if the decreased isozymes of LDH are responsible for the oxidation of lactate to pyruvate in vivo. This was confirmed by measurements of the rate of metabolism of lactate supplied to tuber discs: the rate in transgenic tubers was approximately half that of control tubers. The decrease in LDH activity had no measurable effect on the accumulation of lactate in cold‐stored tubers under anoxia, nor during the subsequent utilization of this lactate upon return to normoxia. In both control and transgenic tubers, the accumulation of lactate during anoxia was not accompanied by an induction of LDH activity or a change in isozyme distribution. In contrast, the metabolism of lactate after a period of anoxia was accompanied by a two‐fold increase in LDH activity and the induction of two isozymes that were distinct from those which had been decreased in the transgenic plants.  相似文献   

17.
Manipulation of starch biosynthesis/degradation and formation of novel molecules in storage organs of plants through genetic engineering is an attractive but technically challenging goal. We report here, for the first time, that starch was degraded and glucose and fructose were produced directly when crushed potato tubers expressing a starch degrading bifunctional gene were heated for 45 minutes at 65 degrees C. To achieve this, we have constructed a fusion gene encoding the thermostable enzymes: alpha-amylase (Bacillus stearothermophilus) and glucose isomerase (Thermus thermophilus). The chimeric gene was placed under the control of the granule-bound-starch synthase promoter. This enzymatic complex produced in transgenic tubers was only active at high temperature (65 degrees C). More than 100 independent transgenic potato plants were regenerated. Molecular analyses confirmed the stable integration of the chimeric gene into the potato genome. The biochemical analyses performed on young and old tubers after high-temperature treatment (65 degrees C) revealed an increase in the formation rate of fructose and glucose by a factor of 16.4 and 5. 7, respectively, in the transgenic tubers as compared to untransformed control tubers. No adverse discernible effect on plant development and metabolism including tuber formation and starch accumulation was observed in the transgenic plants before heat treatment. Our results demonstrate that it is possible to replace starch degradation using microbial enzymes via a system where the enzymes are produced directly in the plants, but active only at high temperature, thus offering novel and viable strategies for starch-processing industries.  相似文献   

18.
Three isoforms of starch synthase (SS) were shown to be present in soluble potato tuber extracts by activity staining after native gel electrophoresis. A cDNA encoding SSI from rice was used as a probe to clone a corresponding cDNA from potato. The deduced amino acid sequence identified the protein as an SS from potato with an Mr of 70.6 kDa for the immature enzyme including its transit peptide. This novel isoform was designated SSI. An analysis of the expression pattern of the gene indicated that SSI is predominantly expressed in sink and source leaves, and, to a lower extent in tubers. In several independent transgenic potato lines, where the expression of SSI was repressed using the antisense approach, the activity of a specific SS isoform was reduced to non-detectable levels as determined through activity staining after native gel electrophoresis. The reduction in the amount of this isoform of SS did not lead to any detectable changes in starch structure, probably due to the fact that this isoform only represents a minor activity in potato tubers. Received: 19 August 1998 / Accepted: 17 December 1998  相似文献   

19.
To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased slightly, while hexose levels remained unaltered, compared with the wild-type controls. Similar to low sucrose-containing invertase tubers, respiration and starch breakdown were found to be accelerated during storage in palatinose-accumulating potato tubers. In contrast to invertase transgenics, however, no accumulation of phosphorylated intermediates was observed. Therefore, it is concluded that sucrose depletion rather than increased hexose metabolism triggers reserve mobilization and respiration in stored potato tubers.  相似文献   

20.
Transgenic potato, Solanum tuberosum L., plants containing a synthetic cry1Ac gene coding for the Bacillus thuringiensis (Bt) crystalline insecticidal protein were produced and evaluated for resistance to Tecia solanivora Povolny (Lepidoptera: Gelechiidae), the larvae of which attack potato tubers. In total, 43 transgenic lines of commercial Andean potato varieties Diacol Capiro, Pardo Pastusa, and Pandeazúcar were obtained. These transgenic lines were found to have one to four copies of cry1Ac per genome and expression levels of Cry1Ac protein varying from 0.02 to 17 microg/g fresh tuber tissue. Bioassays of T. solanivora larvae on these transgenic potato tubers showed 83.7-100% mortality, whereas the mortality levels on nontransgenic lines were 0-2.67%. Our data indicate the capability of Bt transgenic technology to control the T. solanivora while reducing the use of chemical insecticides. Further studies under controlled field conditions will be helpful in exploring the potential of CrylAc potatoes in the insect pest management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号