首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied films of poly(L -tyrosine) with hydrogen phosphate (residue/phosphate, 1:1) by ir spectroscopy. The influences of the alkali cations (Li+, Na+, K+) and of the degree of hydration were clarified. If Li+ ions are present, the OH ??OP hydrogen bonds formed in the dried films between the tyrosine OH groups and hydrogen phosphate are asymmetrical. The formation of hydrogen phosphate–hydrogen phosphate hydrogen bonds is prevented by the presence of the Li+ ions. With an increase in the degree of hydration, the tyrosine–phosphate bonds are not broken but become slightly stronger. Completely different behaviour is found if K+ ions are present. In dry films, the OH ??OP ? O? ?HOP hydrogen bonds formed between tyrosine and hydrogen phosphate show large proton polarizability. The tyrosine proton has a noticeable residence time at the acceptor O atom of the phosphate. The difference in the behaviour of the system with K+ ions when compared to the system with Li+ ions can be explained, since the hydrogen acceptor O atom of phosphate ions is more negatively charged due to the weaker influence of the K+ ions. Furthermore, POH ??OP hydrogen bonds between hydrogen phosphate molecules are formed. With an increase in the degree of hydration, the tyrosine–hydrogen phosphate hydrogen bonds are broken, all tyrosine protons are found at the tyrosine residues, and the -PO3? groupings are in a symmetrical environment, indicating that the K+ ions are removed from these groupings. If the degree of hydration increases further, hydrogen-bonded systems such as hydrogen phosphate–water–hydrogen phosphate are formed that show large proton polarizability due to collective proton motion. When Na+ ions are present, the OH ??OP ? O? ?HOP hydrogen bonds formed in dry films still show proton polarizability, but the residence time of the tyrosine proton at the phosphate is very short.  相似文献   

2.
Glutamic acid [(L-glu)n] + dihydrogen phosphate systems are studied by infrared (IR) spectroscopy dried and hydrated at 75% relative humidity, as a function of both the phosphate-glutamic acid residue (Pi/glu) ratio and the type of cations present. It is shown that the glutamic acid groups form hydrogen-bonded chains with the phosphates. In these chains the positive charge fluctuates, and they show very large proton polarizability which increases in the series Li+,Na+,K+ systems. These chains are cross-linked via phosphate-phosphate hydrogen bonds, in which the proton is almost localized at one Pi. The comparison of the (L-glu)n + dihydrogen phosphate systems with the results obtained earlier in the case of (L-glu)n + hydrogen phosphate systems shows that the behavior of (L-glu)n + Pi systems strongly depends on the pH. Only with decreasing pH the conducting chains are formed. Finally, a hypothesis is discussed with regard to the charge conduction in the F0 subunit of the H+-ATPase in mitochondria.  相似文献   

3.
OH…N ? O?…H+N hydrogen bonds formed between N-all-transretinylidene butylamine (Schiff base) and phenols (1:1) are studied by IR spectroscopy. It is shown that both proton limiting structures of these hydrogen bonds have the same weight with Δ pKa (50%) = (pKa protonated Schiff base minus pKa phenol) = 5.5. With the largely symmetrical systems, continua demonstrate that these hydrogen bonds show great proton polarizability. In the Schiff base + tyrosine system in a non-polar solvent the residence time of the proton at the tyrosine residue is much larger than that at the Schiff base. In CH2CCl2 these hydrogen bonds show, however, still proton polarizability, i.e., the position of the proton transfer equilibrium OH…N ? O?…H+N is shifted to and fro as function of the nature of the environment of this hydrogen bond. Consequences regarding bacteriorhodopsin are discussed.  相似文献   

4.
(L -Cys)n + N-base systems and (L -Cys)n + (L -Lys)n systems were studied by ir spectroscopy. It is shown that in the water-free systems, SH ?N ? S? ?H+N hydrogen bonds are formed. With the (L -Cys)n + N-base systems, both proton-limiting structures in the SH ?N ? S? ?H+N bonds have equal weight when the pKa of the protonated N-base is 2 pKa units larger than that of (L -Cys)n. The same is true with the water-free (L -Cys)n + (L -Lys)n system. Thus, with regard to the type of proton potentials present, these hydrogen bonds are proton-transfer hydrogen bonds showing very large proton polarizabilities. This is confirmed by the occurrence of continua in the ir spectra. Small amounts of water open these hydrogen bonds and increase the transfer of the proton to (L -Lys)n. In the (L -Lys)n + N-base systems, with increasing proton transfer the backbone of (L -Cys)n changes from antiparallel β-structure to coil. In (L -Cys)n + (L -Lys)n, the conformation is determined by the (L -Lys)n conformation and changes depending on the chain length of (L -Lys)n. Finally, the reactivity increase in the active center of fatty acid synthetase, which should be caused by the shift of a proton, is discussed on the basis of the great proton polarizability of the cysteine–lysine hydrogen bonds.  相似文献   

5.
During the photocycle of bacteriorhodopsin (BR) the chromophore, a retinal Schiff base, is deprotonated. Simultaneously an asp residue is protonated. These results suggest that this deprotonation occurs via a Schiff base - asp hydrogen bond. Therefore, we studied carboxylic acid - retinal Schiff base model systems in CCl4 using IR spectroscopy. The IR spectra show that double minimum proton potentials are present in the OH ... N in equilibrium with O- ... HN+ H-bonds formed and that the proton can easily be shifted in these bonds by local electrical fields. The thermodynamic data of H-bond formation and proton transfer within these H-bonds are determined. On the basis of these data a hypothesis is developed with regard to the molecular mechanism of the deprotonation of the Schiff base of BR.  相似文献   

6.
Maltodextrinphosphorylase (MDP) was studied in the pH range 5.4–8.4 by Fourier transform infrared (FT-IR) spectroscopy. The pK a value of the cofactor pyridoxalphosphate (PLP) was found between 6.5 and 7.0, which closely resembles the second pK a of free PLP. FT-IR difference spectra of the binary complex of MDP+α-d-glucose-1-methylenephosphonate (Glc-1-MeP) minus native MDP were taken at pH 6.9. Following binary complex formation, two Lys residues, tentatively assigned to the active site residues Lys533 and Lys539, became deprotonated, and PLP as well as a carboxyl group, most likely of Glu637, protonated. A system of hydrogen bonds which shows large proton polarizability due to collective proton tunneling was observed connecting Lys533, PLP, and Glc-1-MeP. A comparison with model systems shows, furthermore, that this hydrogen bonded chain is highly sensitive to local electrical fields and specific interactions, respectively. In the binary complex the proton limiting structure with by far the highest probability is the one in which Glc-1-MeP is singly protonated. In a second hydrogen bonded chain the proton of Lys539 is shifted to Glu637. In the binary complex the proton remains located at Glu637. In the ternary complex composed of phosphorylase, glucose-1-phosphate (Glc-1-P), and the nonreducing end of a polysaccharide chain (primer), a second proton may be shifted to the phosphate group of Glc-1-P. In the doubly protonated phosphate group the loss of mesomeric stabilization of the phosphate ester makes the C1–O1 bond of Glc-1-P susceptible to bond cleavage. The arising glucosyl carbonium ion will be a substrate for nucleophilic attack by the nonreducing terminal glucose residue of the polysaccharide chain. Received: 15 June 1997 / Revised version: 15 October 1998 / Accepted: 15 October 1998  相似文献   

7.
A Corey-Pauling-Kolthun molecular model of bacteriorhodopsin was built. This model shows that a largely structurally symmetrical hydrogen bonded chain asp, 6 tyr, glu may be formed. With regard to the total proton potential this chain shows very large proton polarizability and thus via this chain the positive charge can be conducted to the outside of the membrane via a Grotthus mechanism.  相似文献   

8.
Polyhistidine-carboxylic acid systems are studied by ir spectroscopy. It is shown that OH ?N ? O?…H+N bonds formed between carboxylic groups and histidine residues are easily polarizable proton-transfer hydrogen bonds when the pKa of the protonated histidine residues is about 2.8 units larger than that of the carboxylic groups. From these results it bis concluded that OH ?N ? O? ?H+N bonds between glutamic or aspartic acid histidine residues in proteins may be easily polarizable proton-transfer bonds. Furthermore, it is demonstrated that water molecules shift the proton-transfer equilibria in these hydrogen bonds in favor of the polar structure, i.e., due to water or polar environments OH ?N ? O? ?H+N bonds with smaller ΔpKa values become easily polarizable proton-transfer hydrogen bonds. A consideration of the amide bands of polyhistidine shows that it can be present in five different conformations. It is shown that these conformational changes are strongly related to the degree of proton transfer. Hence, the degree of proton transfer, the degree of hydration, and conformation are not independent of each other, but are strongly coupled. Further proof for the interdependence of proton transfer and conformational changes are hysteresis effects, which are observed with studies of polyhistidine dependent on carboxylic acid, adsorption and desorption. OH ?N ? O? ?H+N bonds between aspartic and glutamic acid and histidine residues are present in hemoglobin, in ribonucleases, and in proteases, whereby this type of bond is preferentially found in the active centers of these enzymes. It is pointed out that hydrogen bonds with such interaction properties should be of great significance for structure and especially functions of proteins in which they are present.  相似文献   

9.
The nature of hydrogen bonds formed between carboxylic acid residues and histidine residues in proteins is studied by ir spectroscopy. Poly(glutamic acid) [(Glu)n] is investigated with various monomer N bases. The position of the proton transfer equilibrium OH…?N ? O?…?H+N is determined considering the bands of the carboxylic group. It is shown that largely symmetrical double minimum energy surfaces are present in the OH…?N ? O?…?H+N bonds when the pKa of the protonated N base is two values larger than that of the carboxylic groups of (Glu)n. Hence OH…?N ? O?…?H+N bonds between glutamic and aspartic acid residues and histidine residues in proteins may be easily polarizable proton transfer hydrogen bonds. The polarizability of these bonds is one to two orders of magnitude larger than usual electron polarizabilities; therefore, these bonds strongly interact with their environment. It is demonstrated that water molecules shift these proton transfer equilibria in favor of the polar proton boundary structure. The access of water molecules to such bonds in proteins and therefore the position of this proton transfer equilibrium is dependent on conformation. The amide bands show that (Glu)n is α-helical with all systems. The only exception is the (Glu)n-n-propylamine system. When this system is hydrated (Glu)n is α-helical, too. When it is dried, however, (Glu)n forms antiparallel β-structure. This conformational transition, dependent on degree of hydration, is reversible. An excess of n-propylamine has the same effect on conformation as hydration.  相似文献   

10.
Solvent exchange rates of selected protons were measured by NMR saturation recovery for E. coli tRNAVal, E. colifMet and yeast tRNAPhe, at temperatures from 20 to 40 degrees C, in the presence of 0.12M Na+ and various levels of added spermidine. tRNAVal was also studied with added Mg++. The exchange rates in zero spermidine and Mg++ indicate early melting of the U8 A14 interaction, in accord with thermodynamic melting studies. Exchange rates for secondary protons suggest early melting of the T stem in tRNAfMet and the acceptor stem in tRNAPhe, in contradiction with melting transition assignments from thermodynamic work. Addition of 10 spermidines per tRNA stabilizes the secondary and tertiary interactions more effectively than added Na+, but less so than Mg++. Added spermidine has the curious effect of increasing the exchange rate of the psi 55 N1 proton, while protecting the psi 55 N3 proton from exchange in all three tRNA's. Added Mg++ has the same effect on tRNAVal.  相似文献   

11.
There is growing evidence that some enzymes catalyze reactions through the formation of short-strong hydrogen bonds as first suggested by Gerlt and Gassman. Support comes from several experimental and quantum chemical studies that include correlation energies on model systems. In the present study, the process of proton transfer between hydroxyl and imidazole groups, a model of the crucial step in the hydrolysis of RNA by the enzymes of the RNase A family, is investigated at the quantum mechanical level of density functional theory and perturbation theory at the MP2 level. The model focuses on the nature of the formation of a complex between the important residues of the protein and the hydroxyl group of the substrate. We have also investigated different configurations of the ground state that are important in the proton transfer reaction. The nature of bonding between the catalytic unit of the enzyme and the substrate in the model is investigated by Bader's atoms in molecule theory. The contributions of solvation and vibrational energies corresponding to the reactant, the transition state and the product configurations are also evaluated. Furthermore, the effect of protein environment is investigated by considering the catalytic unit surrounded by complete proteins--RNase A and Angiogenin. The results, in general, indicate the formation of a short-strong hydrogen bond and the formation of a low barrier transition state for the proton transfer model of the enzyme.  相似文献   

12.
IR spectra of aqueous solutions of 1:1 mixtures of H2PO4? and various N bases have been studied as models for (POH?N) → (P?O?H+N) hydrogen bonds. 50% proton transfer is observed when the pKa of the protonated N base is 1.1 smaller than that of the phosphate group. The hydrogen bonds are easily polarizable near this equilibrium. These results strongly support the conclusion that such bonds contribute 1) to the self-association of ATP and ADP and 2) to the association of the hydrolysis products ADP and inorganic phosphate.  相似文献   

13.
14.
Proton tunneling in a hydrogen bond can only take place if the potential energy surface has two minima; this is known as a double-well potential. The aim of this work was (i) to present a simple enough 2D model of H-bond double-well potential in harmonic approximation and (ii) to assess how proton transfer therein is affected by H-bond deformations (shifts and turns such as result from conformational motion of molecular structures carrying the donor and the acceptor). It is shown that even small stretching of the H-bond and reorientation of its covalent part (‘bending’) increase the characteristic time of proton tunneling by orders of magnitude. On the other hand, the model, being two-dimensional, demonstrates that different types of deformation not only can aggravate each other but in some cases can be mutually compensatory in terms of proton transfer efficiency. The properties of the model and some implications of the results are discussed.  相似文献   

15.
The question of the nature of the proton bridge involved in general acid-base catalysis in both enzymic and non-enzymic systems is considered in the light of long-known but insufficiently appreciated work of Jencks and his coworkers and of more recent results from neutron-diffraction crystallography and NMR spectroscopic studies, as well as results from isotope-effect investigations. These lines of inquiry lead toward the view that the bridging proton, when between electronegative atoms, is in a stable potential at the transition state, not participating strongly in the reaction-coordinate motion. Furthermore they suggest that bond order is well-conserved at unity for bridging protons, and give rough estimates of the degree to which the proton will respond to structural changes in its bonding partners. Thus if a center involved in general-catalytic bridging becomes more basic, the proton is expected to move toward it while maintaining a unit total bond order. For a unit increase in the pK of a bridging partner, the other partner is expected to acquire about 0.06 units of negative charge. The implications are considered for charge distribution in enzymic transition states as the basicity of catalytic residues changes in the course of molecular evolution or during progress along a catalytic pathway.  相似文献   

16.
The undisputed role of His64 in proton transfer during catalysis by carbonic anhydrases in the α class has raised questions concerning the details of its mechanism. The highly conserved residues Tyr7, Asn62, and Asn67 in the active-site cavity function to fine tune the properties of proton transfer by human carbonic anhydrase II (HCA II). For example, hydrophobic residues at these positions favor an inward orientation of His64 and a low pKa for its imidazole side chain. It appears that the predominant manner in which this fine tuning is achieved in rate constants for proton transfer is through the difference in pKa between His64 and the zinc-bound solvent molecule. Other properties of the active-site cavity, such as inward and outward conformers of His64, appear associated with the change in ΔpKa; however, there is no strong evidence to date that the inward and outward orientations of His64 are in themselves requirements for facile proton transfer in carbonic anhydrase.  相似文献   

17.
18.
Proton release as a modulator of presynaptic function.   总被引:3,自引:0,他引:3  
S F Traynelis  M Chesler 《Neuron》2001,32(6):960-962
In this issue of Neuron, DeVries (2001) describes experiments suggesting that acidification of the synaptic cleft can reduce Ca2+ channel activity and thereby act as a brake on tonic synaptic release of glutamate from cone cells. This work hints at a potentially important new facet to the regulation of synaptic transmission.  相似文献   

19.
Hydrogen bonds formed between photosynthetic reaction centers (RCs) and their cofactors were shown to affect the efficacy of electron transfer. The mechanism of such influence is determined by sensitivity of hydrogen bonds to electron density rearrangements, which alter hydrogen bonds potential energy surface. Quantum chemistry calculations were carried out on a system consisting of a primary quinone Q(A), non-heme Fe(2+) ion and neighboring residues(.) The primary quinone forms two hydrogen bonds with its environment, one of which was shown to be highly sensitive to the Q(A) state. In the case of the reduced primary quinone two stable hydrogen bond proton positions were shown to exist on [Q(A)-His(M219)] hydrogen bond line, while there is only one stable proton position in the case of the oxidized primary quinone. Taking into account this fact and also the ability of proton to transfer between potential energy wells along a hydrogen bond, theoretical study of temperature dependence of hydrogen bond polarization was carried out. Current theory was successfully applied to interpret dark P(+)/Q(A)(-) recombination rate temperature dependence.  相似文献   

20.
Hydrogen bonds formed between photosynthetic reaction centers (RCs) and their cofactors were shown to affect the efficacy of electron transfer. The mechanism of such influence is determined by sensitivity of hydrogen bonds to electron density rearrangements, which alter hydrogen bonds potential energy surface. Quantum chemistry calculations were carried out on a system consisting of a primary quinone QA, non-heme Fe2+ ion and neighboring residues. The primary quinone forms two hydrogen bonds with its environment, one of which was shown to be highly sensitive to the QA state. In the case of the reduced primary quinone two stable hydrogen bond proton positions were shown to exist on [QA-HisM219] hydrogen bond line, while there is only one stable proton position in the case of the oxidized primary quinone. Taking into account this fact and also the ability of proton to transfer between potential energy wells along a hydrogen bond, theoretical study of temperature dependence of hydrogen bond polarization was carried out. Current theory was successfully applied to interpret dark P+/QA recombination rate temperature dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号