首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypersaline waters in salterns have so far been considered to be populated only with halophilic algae and bacteria and completely lacking halophilic fungi. In this paper we present population dynamics of polymorphic black yeasts, isolated from hypersaline waters (3-30% NaCl) of a saltern, in relation to different physicochemical parameters. Hortaea werneckii, Phaeotheca triangularis, Trimmatostroma salinum, Aureobasidium pullulans and Cladosporium spp. were detected with the highest frequency just before the peak of halite (NaCl) concentration. Since H. werneckii, P. triangularis and T. salinum are not known outside saline environments, these results suggest that hypersaline water is their natural ecological niche.  相似文献   

2.
Our aim was to investigate the response of selected yeasts and yeast-like fungi from extreme?environments to various temperatures at the level of their plasma membranes, in order to elucidate the connections between their plasma-membrane fluidity (measured by electron paramagnetic resonance spectroscopy - EPR), growth temperature range, stress tolerance, and ecological distribution. Although all studied fungi can be considered mesophilic according to their growth temperature profiles, their plasma-membrane fluidity indicated otherwise. Arctic yeast Rhodosporidium diobovatum could be classified as psychrotolerant?due to its higher average membrane fluidity. Extremely halotolerant black yeast-like fungus Hortaea werneckii isolated from solar salterns, on the other hand, is not adapted to low temperature, which is reflected in the higher average rigidity of its plasma membrane and as a consequence its inability to grow at temperatures lower than 10°C. The plasma membrane of Aureobasidium sp. isolated so far exclusively from an Arctic glacier with its intermediate fluidity and high fluidity variation at different temperatures may indicate the specialization of this yeast-like fungus to the specific glacial environment. Similar behaviour of plasma membrane was detected in the reference yeast, non-extremophilic Saccharomyces cerevisiae. Its membranes of intermediate fluidity and with high fluidity?fluctuation at different temperatures may reflect the specialization of this yeast to mesophilic environments and prevent its colonization of extreme environments. Halotolerant Aureobasidium pullulans from salterns, and Arctic Cryptococcus liquefaciens and Rhodotorula?mucilaginosa with moderately fluctuating plasma membranes of intermediate fluidity are representatives of globally distributed generalistic and stress-tolerant species that can thrive in a variety of environments. Keeping the membranes stable and flexible is one of the necessities for the microorganisms to survive changes in extreme habitats. Our data suggest that plasma-membrane fluidity can be used as an indicator of fitness for survival in the extreme environments. In addition to the average fluidity of plasma membrane, the fluctuation of fluidity is an important determinant of stress tolerance: high absolute fluidity fluctuation is tied to decreased survival. The fluidity and its variation therefore reflect survival strategy and fitness in extreme environments and are good indicators?of the adaptability of microorganisms.  相似文献   

3.
Hortaea werneckii and Aureobasidium pullulans, black yeast-like fungi isolated from hypersaline waters of salterns as their natural ecological niche, have been previously defined as halophilic and halotolerant microorganisms, respectively. In the present study we assessed their growth and determined the intracellular cation concentrations of salt-adapted and non-salt-adapted cells of both species at a wide range of salinities (0 to 25% NaCl and 0 to 20% NaCl, respectively). Although 5% NaCl improved the growth of H. werneckii, even the minimal addition of NaCl to the growth medium slowed down the growth rate of A. pullulans, confirming their halophilic and halotolerant nature. Salt-adapted cells of H. werneckii and A. pullulans kept very low amounts of internal Na+ even when grown at high NaCl concentrations and can be thus considered Na+ excluders, suggesting the existence of efficient mechanisms for the regulation of ion fluxes. Based on our results, we can conclude that these organisms do not use K+ or Na+ for osmoregulation. Comparison of cation fluctuations after a hyperosmotic shock, to which nonadapted cells of both species were exposed, demonstrated better ionic homeostasis regulation of H. werneckii compared to A. pullulans. We observed small fluctuations of cation concentrations after a hyperosmotic shock in nonadapted A. pullulans similar to those in salt-adapted H. werneckii, which additionally confirmed better regulation of ionic homeostasis in the latter. These features can be expected from organisms adapted to survival within a wide range of salinities and to occasional exposure to extremely high NaCl concentrations, both characteristic for their natural environment.  相似文献   

4.
Halotolerant and halophilic melanized fungi were recently described in hypersaline waters. A close study of the sterol composition of such fungi, namely Hortaea werneckii, Alternaria alternata, Cladosporium sphaerospermum, Cladosporium sp., and Aureobasidium pullulans revealed the dominance of ergosterol and the presence of 29 intermediates of its biosynthesis pathway. The presence or absence of intermediates from distinct synthesis routes gave insight into the operative synthetic pathways from 4,4,14-trimethylcholesta-8,24-dien-3 beta-ol (lanosterol) to ergosterol in melanized fungi and in Saccharomyces cerevisiae, a reference yeast cultured in parallel. In all studied melanized fungi, initial methylation at C-24 took place before C-14 and C-4 demethylation, involving a different reaction sequence from that observed in S. cerevisiae. Further transformation was observed to occur through various routes. In A. alternata, isomerization at C-7 takes place prior to desaturation at C-5 and C-22, and methylene reduction at C-24. In addition to these pathways in Cladosporium spp., H. werneckii, and A. pullulans, ergosterol may also be synthesized through reduction of the C-24 methylene group before desaturation at C-5 and C-22 or vice versa. Moreover, in all studied melanized fungi except A. alternata, ergosterol biosynthesis may also proceed through C-24 methylene reduction prior to C-4 demethylation. -- Méjanelle, L., J. F. Lòpez, N. Gunde-Cimerman, and J. O. Grimalt. Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J. Lipid Res. 2001. 42: 352--358.  相似文献   

5.
We have investigated the mitochondrial responses to hyperosmotic environments of ionic (4.5 M NaCl) and non-ionic (3.0 M sorbitol) osmolytes in the most halo/osmo-tolerant black yeast, Hortaea werneckii. Adaptation to both types of osmolytes resulted in differential expression of mitochondria-related genes. Live-cell imaging has revealed a condensation of mitochondria in hyperosmotic media that depends on osmolyte type. In the hypersaline medium, this was accompanied by increased ATP synthesis and oxidative damage protection, whereas adaptation to the non-ionic osmolyte resulted in a decrease in ATP synthesis and lipid peroxidation level in mitochondria. A proteomic study of the mitochondria revealed preferential accumulation of energy metabolism enzymes in the hypersaline medium, and accumulation of protein chaperones in the non-ionic osmolyte. The HwBmh1/14-3-3 protein, localized to mitochondria in hypersaline conditions, and not at optimal salinity, suggesting its role in differential perception of ionic and non-ionic osmolytes in H. werneckii.  相似文献   

6.
The ascomycetous black yeasts Hortaea werneckii, Phaeotheca triangularis, and Trimmatostroma salinum are halophilic fungi that inhabit hypersaline water of solar salterns. They are characterized by slow, meristematic growth and very thick, darkly pigmented cell walls. The dark pigment, generally thought to be melanin, is consistently present in their cell walls when they grow under saline and non-saline conditions. We used the inhibitor tricyclazole to test the fungi in this study for the presence of 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis, since fungal melanins reportedly are derived either from DHN, tyrosine via 3,4-dihydroxyphenylalanine, gamma-glutaminyl-3,4-dihydroxybenzene, or catechol. Tricyclazole-treated cultures of the fungi were reddish-brown in color and contained typical intermediates of the DHN-melanin pathway, as demonstrated by high-performance liquid chromatography. This investigation showed that the three fungi synthesized DHN-melanin under saline and non-saline growth conditions.  相似文献   

7.
Melanin has an important role in the ability of fungi to survive extreme conditions, like the high NaCl concentrations that are typical of hypersaline environments. The black fungus Hortaea werneckii that has been isolated from such environments has 1,8-dihydroxynaphthalene-melanin incorporated into the cell wall, which minimises the loss of glycerol at low NaCl concentrations. To further explore the role of melanin in the extremely halotolerant character of H. werneckii, we studied the effects of several melanin biosynthesis inhibitors on its growth, pigmentation and cell morphology. The most potent inhibitors were a 2,3-dihydrobenzofuran derivative and tricyclazole, which restricted the growth of H. werneckii on high-salinity media, as shown by growth curves and plate-drop assays. These inhibitors promoted release of the pigments from the H. werneckii cell surface and changed the medium colour. Inhibitor-treated H. werneckii cells exposed to high salinity showed both decreased and increased cell lengths. We speculate that this absence of melanin perturbs the integrity of the cell wall in H. werneckii, which affects its cell division and exposes it to the harmful effects of high NaCl concentrations. Surprisingly, melanin had no effect on H. werneckii survival under H2O2 oxidative stress.  相似文献   

8.
The 3'-phosphoadenosine-5'-phosphatase encoded by HAL2 gene, is a ubiquitous enzyme required for the removal of the cytotoxic 3'-phosphoadenosine-5'-phosphate produced during sulfur assimilation in eukaryotes. Salt toxicity in yeast and plants results from Hal2 inhibition by sodium or lithium ions. Two novel HAL2-like genes, HwHAL2A and HwHAL2B, have been cloned from saltern-inhabited extremely halotolerant black yeast Hortaea werneckii. Expression of both HwHAL2 isoforms was differentially inducible upon salt. When the HwHAL2 genes were transferred from such a halotolerant species into the salt sensitive Saccharomyces cerevisiae, the resulting organism can tolerate 1.8M NaCl or 0.8M LiCl, the highest reported salt concentrations at which S. cerevisiae can grow. With genetic and biochemical validation we demonstrated the critical HwHal2B sequence motif--the META sequence--common only to Dothideales fungi, with evident effect on the HwHal2B-dependent salt tolerance. These results may have significance for biosaline agriculture in coastal environments.  相似文献   

9.
Hortaea werneckii is a black yeast recently isolated from salterns in Slovenia. Some of the adaptations of halophilic microorganisms to increased salinity and osmolarity of the environment are alterations in membrane properties. By modulating the fluidity, sterols play an important role as a component of eukaryotic biological membranes. We studied the regulation of sterol biosynthesis in H. werneckii through the activity and amount of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG R), a key regulatory enzyme in the biosynthesis of sterols. We found some differences in the characteristics of HMG R and in its regulation by different environmental salinities in H. werneckii when compared to the mesophilic baker's yeast, Saccharomyces cerevisiae. Our results suggest that halophilic black yeast regulates sterol biosynthesis through HMG R in a different way than mesophiles, which might be a consequence of the different ecophysiology of halophilic black yeasts. From this perspective, H. werneckii is an interesting novel model organism for studies on salt stress-responsive proteins as well as on sterol biosynthesis in eukaryotes.  相似文献   

10.
Extremely halophilic bacteria in crystallizer ponds from solar salterns   总被引:19,自引:0,他引:19  
It is generally assumed that hypersaline environments with sodium chloride concentrations close to saturation are dominated by halophilic members of the domain Archaea, while Bacteria are not considered to be relevant in this kind of environment. Here, we report the high abundance and growth of a new group of hitherto-uncultured Bacteria in crystallizer ponds (salinity, from 30 to 37%) from multipond solar salterns. In the present study, these Bacteria constituted from 5 to 25% of the total prokaryotic community and were affiliated with the Cytophaga-Flavobacterium-Bacteroides phylum. Growth was demonstrated in saturated NaCl. A provisional classification of this new bacterial group as "Candidatus Salinibacter gen. nov." is proposed. The perception that Archaea are the only ecologically relevant prokaryotes in hypersaline aquatic environments should be revised.  相似文献   

11.
The extreme osmotic conditions prevailing in hypersaline environments result in decreasing metabolic diversity with increasing salinity. Various microbial metabolisms have been shown to occur even at high salinity, including photosynthesis as well as sulfate and nitrate reduction. However, information about anaerobic microbial iron metabolism in hypersaline environments is scarce. We studied the phylogenetic diversity, distribution, and metabolic activity of iron(II)-oxidizing and iron(III)-reducing Bacteria and Archaea in pH-neutral, iron-rich salt lake sediments (Lake Kasin, southern Russia; salinity, 348.6 g liter(-1)) using a combination of culture-dependent and -independent techniques. 16S rRNA gene clone libraries for Bacteria and Archaea revealed a microbial community composition typical for hypersaline sediments. Most-probable-number counts confirmed the presence of 4.26 × 10(2) to 8.32 × 10(3) iron(II)-oxidizing Bacteria and 4.16 × 10(2) to 2.13 × 10(3) iron(III)-reducing microorganisms per gram dry sediment. Microbial iron(III) reduction was detected in the presence of 5 M NaCl, extending the natural habitat boundaries for this important microbial process. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of total Bacteria, total Archaea, and species dominating the iron(III)-reducing enrichment cultures (relatives of Halobaculum gomorrense, Desulfosporosinus lacus, and members of the Bacilli) were highest in an iron oxide-rich sediment layer. Combined with the presented geochemical and mineralogical data, our findings suggest the presence of an active microbial iron cycle at salt concentrations close to the solubility limit of NaCl.  相似文献   

12.
Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding proglacial sediments or by in-wash of surface meltwaters). Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes amplified from these environments revealed that the subglacial water, basal ice, and sediment communities were distinct from those detected in supraglacial meltwater and proglacial sediments, with 60 of 142 unique terminal restriction fragments (T-RFs) detected exclusively in subglacial samples and only 8 T-RFs detected in all three environments. Supraglacial waters shared some T-RFs with subglacial water and ice, likely reflecting the seasonal flow of surface meltwater into the subglacial drainage system, whereas supraglacial and proglacial communities shared the fewest T-RFs. Thus, the subglacial community at John Evans Glacier appears to be predominantly autochthonous rather than allochthonous, and it may be adapted to subglacial conditions. Chemical analysis of water and melted ice also revealed differences between the supraglacial and proglacial environments, particularly regarding electrical conductivity and nitrate, sulfate, and dissolved organic carbon concentrations. Whereas the potential exists for common bacterial types to be broadly distributed throughout the glacial system, we have observed distinct bacterial communities in physically and chemically different glacial environments.  相似文献   

13.
Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding proglacial sediments or by in-wash of surface meltwaters). Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes amplified from these environments revealed that the subglacial water, basal ice, and sediment communities were distinct from those detected in supraglacial meltwater and proglacial sediments, with 60 of 142 unique terminal restriction fragments (T-RFs) detected exclusively in subglacial samples and only 8 T-RFs detected in all three environments. Supraglacial waters shared some T-RFs with subglacial water and ice, likely reflecting the seasonal flow of surface meltwater into the subglacial drainage system, whereas supraglacial and proglacial communities shared the fewest T-RFs. Thus, the subglacial community at John Evans Glacier appears to be predominantly autochthonous rather than allochthonous, and it may be adapted to subglacial conditions. Chemical analysis of water and melted ice also revealed differences between the supraglacial and proglacial environments, particularly regarding electrical conductivity and nitrate, sulfate, and dissolved organic carbon concentrations. Whereas the potential exists for common bacterial types to be broadly distributed throughout the glacial system, we have observed distinct bacterial communities in physically and chemically different glacial environments.  相似文献   

14.
Extreme environments have for long been considered to be populated almost exclusively by prokaryotic organisms and therefore monopolized by bacteriologists. Solar salterns are natural hypersaline environments characterized by extreme concentrations of NaCl, often high concentrations of other ions, high uv irradiation and in some cases extremes in pH. In 2000 fungi were first reported to be active inhabitants of solar salterns. Since then many new species and species previously known only as food contaminants have been discovered in hypersaline environments around the globe. The eukaryotic microorganism most studied for its salt tolerance is Saccharomyces cerevisiae. However, S. cerevisiae is rather salt sensitive and not able to adapt to hypersaline conditions. In contrast, some species like Debaryomyces hansenii, Hortaea werneckii, and Wallemia ichthyophaga have been isolated globally from natural hypersaline environments. We believe that all three are more suitable model organisms to study halotolerance in eukaryotes than S. cerevisiae. Furthermore, they belong to different and distant taxonomic groups and have developed different strategies to cope with the same problems of ion toxicity and loss of water.  相似文献   

15.
Cyanobacteria and diatom mats are ubiquitous in hypersaline environments but have never been observed in the Dead Sea, one of the most hypersaline lakes on Earth. Here we report the discovery of phototrophic microbial mats at underwater freshwater seeps in the Dead Sea. These mats are either dominated by diatoms or unicellular cyanobacteria and are spatially separated. Using in situ and ex situ O2 microsensor measurements we show that these organisms are photosynthetically active in their natural habitat. The diatoms, which are phylogenetically associated to the Navicula genus, grew in culture at salinities up to 40 % Dead Sea water (DSW) (14 % total dissolved salts, TDS). The unicellular cyanobacteria belong to the extremely halotolerant Euhalothece genus and grew at salinities up to 70 % DSW (24.5 % TDS). As suggested by a variable O2 penetration depth measured in situ, the organisms are exposed to drastic salinity fluctuations ranging from brackish to DSW salinity within minutes to hours. We could demonstrate that both phototrophs are able to withstand such extreme short-term fluctuations. Nevertheless, while the diatoms recover better from rapid fluctuations, the cyanobacteria cope better with long-term exposure to DSW. We conclude that the main reason for the development of these microbial mats is a local dilution of the hypersaline Dead Sea to levels allowing growth. Their spatial distribution in the seeping areas is a result of different recovery rates from short or long-term fluctuation in salinity.  相似文献   

16.
Two halophilic, hydrocarbonoclastics bacteria, Marinobacter sedimentarum and M. flavimaris, with diazotrophic potential occured in hypersaline waters and soils in southern and northern coasts of Kuwait. Their numbers were in the magnitude of 103 colony forming units g?1. The ambient salinity in the hypersaline environments was between 3.2 and 3.5 M NaCl. The partial 16S rRNA gene sequences of the two strains showed, respectively, 99 and 100 % similarities to the sequences in the GenBank. The two strains failed to grow in the absence of NaCl, exhibited best growth and hydrocarbon biodegradation in the presence of 1 to 1.5 M NaCl, and still grew and maintained their hydrocarbonoclastic activity at salinities up to 5 M NaCl. Both species utilized Tween 80, a wide range of individual aliphatic hydrocarbons (C9–C40) and the aromatics benzene, biphenyl, phenanthrene, anthracene and naphthalene as sole sources of carbon and energy. Experimental evidence was provided for their nitrogen-fixation potential. The two halophilic Marinobacter strains successfully mineralized crude oil in nutrient media as well as in hypersaline soil and water microcosms without the use of any nitrogen fertilizers.  相似文献   

17.
Abstract There exists a wide diversity of halophilic eubacteria with chemoorganotrophic-aerobic metabolism. Most of them have a more moderate salt response than halophilic archaebacteria, falling into the category of moderately halophilic bacteria. Although mostly isolated from salted food, their natural habitats are hypersaline waters of intermediate levels of salt concentration, and hypersaline soils. In hypersaline waters, the taxonomic groups found are the ones that also predominate in ocean waters, such as representatives of the genera Vibrio, Pseudomonas and Flavobacterium . However, in hypersaline soils, the taxonomic groups present are those typical of normal soils, such as Pseudomonas, Bacillus and Gram-positive cocci. The halophilic bacteria from soils are also more resistant to exposure to low salt concentrations than the organisms isolated from waters. Therefore, it seems that the general characteristics of the hypersaline environments drastically affect the types of halophilic bacteria present, and that the halophilic character has arisen in many phylogenetic groups of eubacteria.  相似文献   

18.
19.
Substantial halophilic organisms have been found in 100–200‰ salinities. These ranges represent a highly specialized halophilic environment to which only a few halotolerant species have adapted. Recent studies have underlined the existence of diverse obligately halophilic protozoa in the salinity ranges of 100–200‰. The ranges of salinity under which these organisms can grow have been examined to some extent, but the balance of specific ions that will support growth has not been investigated. The heterotrophic nanoflagellate Halocafeteria, the type strain of which grows optimally at 150‰ salinity and 35°C, is a commonly encountered obligate halophile found in very hypersaline environments. These extreme environments can vary in their Mg:Ca ratios (i.e. weight ratios) and sulfate concentrations. To examine growth response of Halocafeteria to the different chemical compositions, densities of Halocafeteria seosinensis strain EHF34 were monitored in seven different ion composition media for 9 days at 1- to 2-day intervals (at 150‰ salinity and 35°C, with no prey limitation). Halocafeteria does not grow at Mg:Ca ratios of 35 and 100 and at high sulfate concentrations of 11.6 and 31.6 g l−1. It grows well in 0.6 g l−1 sulfate media at Mg:Ca ratios of 2, 10 or 35, but not 100. The present study demonstrates that the growth of the obligate halophile Halocafeteria can be affected by different ion compositions in hypersaline environments. Therefore, Halocafeteria may not be ubiquitous in hypersaline environments due to its ionic requirements.  相似文献   

20.
Vibrio species are ubiquitous in a number of different aquatic environments and promptly adapting to environmental changes due to high genome plasticity. The presence of these bacteria in marine salterns, in relation to a salinity gradient has been not investigated yet. Moreover, it is not clear if these hypersaline environments could represent a reservoir for Vibrio spp. This work investigated, through a metagenetic approach, the distribution of Vibrio (over 2 years) in different ponds along the salinity gradient within the ‘Saline di Tarquinia’ salterns, considering also the adjacent coastal waters and an isolated brine storage basin (BSB). Vibrio occurrence was higher in the sea than in the ponds and BSB, where it usually represented a rare taxon (abundance <1%). In the sea, it showed abundances in-between 1%–2.6% in 8 months out of 24. Four OTUs were assigned to the Vibrio genus; except for one that was more abundant in BSB, the others were much higher in the sea. Redundancy analysis (RDA) suggested a different distribution of the OTUs in relation to water temperature and salinity. Vibrio was found, even with low abundances, at the highest salinities also, suggesting the salterns as a possible reservoir for the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号