首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lu H  Gorman E  McKnight TD 《Planta》2005,221(3):352-360
The potent anticancer and antiviral compound camptothecin (CPT) is a monoterpene indole alkaloid produced by Camptotheca acuminata. In order to investigate the biosynthetic pathway of CPT, we studied the early indole pathway, a junction between primary and secondary metabolism, which generates tryptophan for both protein synthesis and indole alkaloid production. We cloned and characterized the alpha subunit of anthranilate synthase (ASA) from Camptotheca (designated CaASA), catalyzing the first committed reaction of the indole pathway. CaASA is encoded by a highly conserved gene family in Camptotheca. The two CaASA genes are differentially regulated. The level of CaASA2 is constitutively low in Camptotheca and was found mainly in the reproductive tissues in transgenic tobacco plants carrying the CaASA2 promoter and -glucuronidase gene fusion. CaASA1 was detected to varying degrees in all Camptotheca organs examined and transiently induced to a higher level during seedling development. The spatial and developmental regulation of CaASA1 paralleled that of the previously characterized Camptotheca gene encoding the beta subunit of tryptophan synthase as well as the accumulation of CPT. These data suggest that CaASA1, rather than CaASA2, is responsible for synthesizing precursors for CPT biosynthesis in Camptotheca and that the early indole pathway and CPT biosynthesis are coordinately regulated.  相似文献   

3.
为了揭示喜树碱(camptothecin, CPT)和10-羟基喜树碱(10-hydroxycamptothecin, HCPT)在喜树(Camptotheca acuminata Decaisne)体内代谢的生理调控机制及这两种类似物之间的关系和作用,运用高效液相色谱技术对种子形成、成熟、萌发和幼苗生长过程中喜树碱和10-羟基喜树碱的代谢动态进行了全面的研究.结果表明,喜树碱相对稳定地存在于成熟和幼嫩的组织中;10-羟基喜树碱特异性地积累在乳熟期的种子、种芽的子叶、幼嫩的真叶等幼嫩组织中,随着组织的进一步发育和成熟,其含量快速减少,成熟组织中积累极少,并且这两种生物碱的代谢在时间和数量上都呈现出相互消长的特点,由此推断,这两种生物碱不同程度地受生长发育调控的特点可能与喜树的化学防御策略密切相关,并且,它们之间可以相互转化以充分利用有限的氮素资源.  相似文献   

4.
Wang Q  Pi Y  Hou R  Jiang K  Huang Z  Hsieh MS  Sun X  Tang K 《BMB reports》2008,41(2):112-118
Camptothecin is an anti-cancer monoterpene indole alkaloid. The gene encoding 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (designated as CaHDR), the last catalytic enzyme of the MEP pathway for terpenoid biosynthesis, was isolated from camptothecin-producing Camptotheca acuminata. The full-length cDNA of CaHDR was 1686 bp encoding 459 amino acids. Comparison of the cDNA and genomic DNA of CaHDR revealed that there was no intron in genomic CaHDR. Southern blot analysis indicated that CaHDR belonged to a low-copy gene family. RT-PCR analysis revealed that CaHDR expressed constitutively in all tested plant organs with the highest expression level in flowers, and the expression of CaHDR could be induced by 100 microM methyl-jasmonate (MeJA), but not by 100 mg/L salicylic acid (SA) in the callus of C. acuminata. The complementation of CaHDR in Escherichia coli ispH mutant MG1655 demonstrated its function.  相似文献   

5.
Camptothecin derivatives are clinically used anti-neoplastic alkaloids that biogenetically belong to monoterpenoid indole alkaloids. Camptothecin-related alkaloids from the methanol extracts of Ophiorrhiza pumila, Camptotheca acuminata and Nothapodytes foetida plants were profiled and identified using a reverse-phase high performance liquid chromatography coupled with on-line photodiode array detection and electrospray-ionization ion-trap mass spectrometry. A natural 10-glycosyloxy camptothecin, chaboside, was accumulated in tissues of O. pumila but not in C. acuminata and N. foetida. Anthraquinones regarded as phytoalexins were present in the extracts of hairy roots and calli but not in the differentiated plants of O. pumila. These findings demonstrated a remarkable difference in the constituents between the differentiated plants and the hairy roots or calli tissues. The activity of strictosidine synthase, a key enzyme of camptothecin biosynthesis, was detected in the protein extracts of stems and roots of O. pumila, being correlated with the pattern of strictosidine synthase mRNA expression.  相似文献   

6.
喜树碱和10—羟基喜树碱受喜树生长发育调控的不同特点   总被引:2,自引:0,他引:2  
为了揭示喜树碱(camptothecin,CPT)和10-羟基喜树碱(10-hydroxycamptothecin,HCPT)在喜树(Camptotheca acuminata Decaisne)体内代谢的生理调控机制及这两种类似物之间的关系和作用。运用高效液相色谱技术对种子形成,成熟,萌发和幼苗生长过程中喜树三和10-羟基喜树碱的代谢动态进行了全面的研究。结果表明,喜树碱相对稳定地存在于成熟的幼嫩的组织中;10-羟基喜树碱特异性地积累在乳熟期的种子,种芽的子叶,幼嫩的真叶等幼嫩组织中,随着组织的进一步发育和成熟,其含量快速减少,成熟组织中积累极少,并且这两种生物碱的代谢在时间和数量上都呈现出相互消长的特点,由此推断,这两种生物碱不同程度地受生长发育调控的特点可能与喜树的化学防御策略密切相关。并且,它们之间可以相互转化以充分利用有限的氮素资源。  相似文献   

7.
Camptothecin (CPT) is a valuable anti-cancer monoterpene alkaloid produced by the Chinese tree Camptotheca acuminata . Tryptophan decarboxylase (TDC) supplies tryptamine for the indole moiety of CPT and its derivatives, and is considered a key step in monoterpene indole alkaloid biosynthesis as it links primary and secondary metabolism. This report describes the isolation and characterization of tdc1 and tdc2 , two autonomously regulated TDC genes from Camptotheca . When expressed in Escherichia coli , the products of each gene could decarboxylate tryptophan, but were inactive against tyrosine, phenylalanine and 3,4-dihydroxyphenylalanine (dopa). tdc1 was developmentally regulated, having its highest expression level in the apex, young stem and bark, tissues which also contain the highest levels of CPT. Expression of tdc1 also increased during seedling development and was correlated with alkaloid accumulation during germination. tdc2 expression was induced in Camptotheca leaf discs and cell suspension cultures treated with fungal elicitor or methyl jasmonate, treatments which did not affect tdc1 expression. Unlike tdc1 , tdc2 expression was not detected in any unstressed Camptotheca tissues nor in developing seedlings. These data suggest that tdc1 may be part of a developmentally regulated chemical defense system in Camptotheca , while tdc2 serves as part of a defense system induced during pathogen challenge.  相似文献   

8.
Biosynthesis of secondary metabolites may be affected by environmental stimuli. In the present work, the effect of drought on the levels of an indole alkaloid (camptothecin [CPT]) in Camptotheca acuminata seedlings was investigated. Three seed sources, one from its native habitat in China and two from earlier introductions to the United States, in Texas and South Carolina, were used to compare response patterns. Progressive drought stress significantly reduced biomass production in the 3 seed sources of C. acuminata . Stomatal conductance closely followed the drought cycles, indicating the stress levels experienced by the plants. Leaf CPT concentrations showed a strong increase in the initial drought cycle in all seed sources except Texas, but they deviated in the second drought cycle, in which the South Carolina source continued to increase, whereas the Chinese and Texas seed sources decreased. CPT was inducible by drought, but the sustainability of the drought effect on leaf CPT concentrations was low and varied among seed sources.  相似文献   

9.
植物在长期的生态环境适应过程中,产生了包括生物碱在内的大量次生代谢物.本文以我国特有树种--喜树(Camptotheca acuminata Decaisne)为材料,研究其不同器官中喜树碱(camptothecin,CPT)和10-羟基喜树碱(10-hydroxycamptothecin,HCPT)在不同热激温度和时间情况下的含量变化.CPT和HCPT变化呈现出较好的相互消长关系,并且分别在38℃和40℃达到各自的峰值,比以丙二醛和叶绿素为指标的致死温度低了2~4℃;HCPT在热激过程中的变化较CPT活跃;极易受到攻击和伤害的嫩叶中的生物碱含量变化最大.由此推断,CPT和HCPT遵循"幼嫩和生殖器官优先保护"的原则,从而有效地缓解了高温胁迫,并且HCPT和CPT代表了不同的防御策略.  相似文献   

10.
To better understand the biosynthesis of Camptotheca acuminata alkaloids, the effect on camptothecin production of feeding with potential precursors of biosynthesis was studied (i.e., tryptamine and loganin combined, secologanin, and strictosidine). Two key enzymes in alkaloid biosynthesis 〚i.e., tryptophan decarboxylase (TDC; EC 4.1.1.28) and strictosidine synthase (STR; EC 4.3.3.2)〛 were also studied. The analyses were conducted using a C. acuminata CG1 cell line that does not produce alkaloids, which could be useful in better understanding the biosynthetic pathway and in identifying possible limiting factors. The activity of TDC was 5 pkat mg–1; the activity of STR was 1.1 pkat mg–1. Feeding with strictosidine revealed that this precursor is easily biotransformed by two enzymes (i.e., a hydroxylase and a dehydrogenase) in hydroxystrictosidine and didehydrostrictosidine, but camptothecin was never detected. The indole pathway and the low level of STR activity could be limiting factors in the production of camptothecin in the cell line used.  相似文献   

11.
丛枝菌根对喜树幼苗生长和氮、磷吸收的影响   总被引:12,自引:0,他引:12       下载免费PDF全文
喜树(Camptotheca acuminata)是我国特有的多年生亚热带落叶阔叶树种,因其次生代谢产物喜树碱具有良好的抗肿瘤活性而受到人们的广泛关注。该文通过温室盆栽接种试验,观察了2属6种丛枝菌根真菌即蜜色无梗囊霉(Acaulospora mellea)、光壁无梗囊霉(A. laevis)、木薯球囊霉(Glomus manihot)、地表球囊霉(G. versiforme)、幼套球囊霉(G. etunicatum)和透光球囊霉(G. diaphanum)对喜树幼苗生长和氮、磷养分吸收的影响。结果表明,丛枝菌根的形成对喜树幼苗的生长以及氮、磷营养的吸收均有影响。从生物量看,除幼套球囊霉和光壁无梗囊霉侵染形成的丛枝菌根喜树幼苗与无菌根幼苗(CK)差异不显著外,其余菌根幼苗的生物量均明显大于无菌根幼苗,透光球囊霉和蜜色无梗囊霉菌根幼苗尤为突出,分别达到无菌根幼苗的1.9和1.4倍。丛枝菌根的形成似乎不利于喜树幼苗的氮素营养吸收,并且主要体现在叶片的氮含量上。相反,丛枝菌根形成总体上促进喜树幼苗对磷素营养的吸收,并且主要体现在根的磷含量上。与无菌根幼苗比,所有菌根幼苗根的氮、磷分配比例增加,而叶片的氮、磷分配比例减少。  相似文献   

12.
Kumar S  Dutta A  Sinha AK  Sen J 《The FEBS journal》2007,274(5):1290-1303
Catharanthus roseus (L.) G. Don produces a number of biologically active terpenoid indole alkaloids via a complex terpenoid indole alkaloid biosynthetic pathway. The final dimerization step of this pathway, leading to the synthesis of a dimeric alkaloid, vinblastine, was demonstrated to be catalyzed by a basic peroxidase. However, reports of the gene encoding this enzyme are scarce for C. roseus. We report here for the first time the cloning, characterization and localization of a novel basic peroxidase, CrPrx, from C. roseus. A 394 bp partial peroxidase cDNA (CrInt1) was initially amplified from the internodal stem tissue, using degenerate oligonucleotide primers, and cloned. The full-length coding region of CrPrx cDNA was isolated by screening a leaf-specific cDNA library with CrInt1 as probe. The CrPrx nucleotide sequence encodes a deduced translation product of 330 amino acids with a 21 amino acid signal peptide, suggesting that CrPrx is secretory in nature. The molecular mass of this unprocessed and unmodified deduced protein is estimated to be 37.43 kDa, and the pI value is 8.68. CrPrx was found to belong to a 'three intron' category of gene that encodes a class III basic secretory peroxidase. CrPrx protein and mRNA were found to be present in specific organs and were regulated by different stress treatments. Using a beta-glucuronidase-green fluorescent protein fusion of CrPrx protein, we demonstrated that the fused protein is localized in leaf epidermal and guard cell walls of transiently transformed tobacco. We propose that CrPrx is involved in cell wall synthesis, and also that the gene is induced under methyl jasmonate treatment. Its potential involvement in the terpenoid indole alkaloid biosynthetic pathway is discussed.  相似文献   

13.
14.
15.
16.
滤光膜对喜树幼苗叶片生长和喜树碱含量的影响   总被引:14,自引:4,他引:14  
喜树 (Camptotheca acuminata)为中国特有树种 ,因其次生代谢产物喜树碱具有抗癌作用而闻名。通过用黄色、红色、蓝色 3种滤光膜对温室栽培的喜树幼苗进行遮光处理 ,研究了不同光照环境下喜树幼苗叶片生物量、叶绿素含量、光合作用和喜树碱含量的差异。结果表明在 30 d的遮光过程中 ,红膜和蓝膜遮光明显导致幼苗叶片生物量降低 ,黄膜遮光下幼苗叶片生物量在处理后 2 5 d才表现明显降低。不同滤光膜下幼苗叶片叶绿素含量先降低然后升高 ,遮光幼苗的叶绿素 a/ b明显低于日光幼苗。幼苗日最大净光合速率的顺序是 :日光 >黄膜 >红膜 >蓝膜。处理后第 2 0天 ,不同滤光膜下幼苗的光饱和光合速率 (Amax)、光饱和点 (Is)、光补偿点 (Ic)、最大表观量子效率 (AQYmax)都不同程度的低于日光幼苗。处理后第 10天至第 30天 ,遮光幼苗叶片喜树碱含量均显著高于日光下幼苗 ,以蓝膜下幼苗的喜树碱含量最高。蓝膜和黄膜下幼苗的喜树碱产量在后期处理中显著高于日光下幼苗 ,蓝膜下幼苗喜树碱产量在第 30天最高 ,是日光下幼苗的 2 .4 9倍。红膜下幼苗的喜树碱产量在第 10天后与日光下幼苗差异不显著。通过滤光膜遮光促进喜树碱在幼苗叶片中的积累 ,提高了叶片喜树碱产量 ,对喜树碱的生产实践有一定的意义  相似文献   

17.
The plant tryptophan (Trp) biosynthetic pathway produces many secondary metabolites with diverse functions.Indole-3-acetic acid (IAA),proposed as a derivative from Trp or its precursors,plays an essential role in plant growth and development.Although the Trp-dependant and Trp-independent IAA biosynthetic pathways have been proposed,the enzymes,reactions and regulatory mechanisms are largely unknown.In Arabidopsis,indole-3-glycerol phosphate (IGP) is suggested to serve as a branchpoint component in the Trp-independent IAA biosynthesis.To address whether other enzymes in addition to Trp synthase α(TSA1) catalyze IGP cleavage,we identified and characterized an indole synthase (INS) gene,a homolog of TSA1 in Arabidopsis.INS exhibits different subcellular localization from TSA1 owing to the lack of chloroplast transit peptide (cTP).In silico data show that the expression levels of INS and TSA1 in all examined organs are quite different.Histochemical staining of INS promoter-GUS transgenic lines indicates that INS is expressed in vascular tissue of cotyledons,hypocotyls,roots and rosette leaves as well as in flowers and siliques.INS is capable of complementing the Trp auxotrophy of Escherichia coil △trpA strain,which is defective in Trp synthesis due to the deletion of TSA.This implies that INS catalyzes the conversion of IGP to indole and may be involved in the biosynthesis of Trp-independent IAA or other secondary metabolites in Arabidopsis.  相似文献   

18.
19.
The metabolic profile of secondary products in calli and cell suspension cultures of Camptotheca acuminata Decaisne was investigated and compared to that of the leaves and roots taken from the plant. Neither in vitro system produced the anticancer quinoline alkaloid camptothecin (CPT); they accumulated discrete quantities of polyhydroxylated triterpenoids, different from those found in the plant organs, and ellagic acid derivatives. Nine ellagic acid derivatives (1a-1d and 2a-2e) and eight triterpenoid acids (3a-3e and 4a-4c) were isolated and characterised. All the identified triterpenes were related to ursane- or oleanane-type skeletons and their concentrations rose to 4.5% in suspended cells.  相似文献   

20.
Camptothecin, over four decades of surprising findings   总被引:18,自引:0,他引:18  
Lorence A  Nessler CL 《Phytochemistry》2004,65(20):2735-2749
Camptothecin (CPT) is a modified monoterpene indole alkaloid produced by Camptotheca acuminata (Nyssaceae), Nothapodytes foetida, Pyrenacantha klaineana, Merrilliodendron megacarpum (Icacinaceae), Ophiorrhiza pumila (Rubiaceae), Ervatamia heyneana (Apocynaceae) and Mostuea brunonis (Gelsemiaceae), species belonging to unrelated orders of angiosperms. From the distribution of CPT and other secondary metabolites, it has been postulated that the genes encoding enzymes involved in their biosynthesis evolved early during evolution. These genes were presumably not lost during evolution but might have been "switched off" during a certain period of time and "switched on" again at some later point. The CPT derivatives, irinotecan and topotecan, are used throughout the world for the treatment of various cancers, and over a dozen more CPT analogues are currently at various stages of clinical development. The worldwide market size of irinotecan/topotecan in 2002 was estimated at about $750 million and at $1 billion by 2003. In spite of the rapid growth of the market, CPT is still harvested by extraction from bark and seeds of C. acuminata and N. foetida. All parts of C. acuminata contain some CPT, although the highest level is found in young leaves (approximately 4-5 mg g(-1) dry weight), approximately 50% higher than in seeds and 250% higher than in bark. The development of hairy root cultures of O. pumila and C. acuminata, and the cloning and characterization of genes encoding key enzymes of the pathway leading to CPT formation in plants has opened new possibilities to propose alternative and more sustainable production systems for this important alkaloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号