首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Human erythrocyte membrane proteins were analyzed by a modified two-dimensional electrophoresis performed according to O'Farrell. This method was used to construct a two-dimensional map of human erythrocyte membrane proteins. The map plotted in the coordinates "relative molecular mass versus relative electrophoretic mobility during IEF" was used for the characterization of 189 proteins. The position of major membrane proteins in the map was determined on the basis of their Mr, pI as well as literature data. Carboanhydrase was positioned by coelectrophoresis. A comparative analysis of erythrocyte membrane and cytosol preparations by two-dimensional protein mapping revealed that some of erythrocyte proteins have dual localization.  相似文献   

4.
5.
6.
7.
The crosslinking of membrane proteins of human erythrocytes by diamide (diazene dicarboxylic acid bis(N,N-dimethylamide) ) was quantified by 4% polyacrylamide gel electrophoresis in 1% sodium dodecyl sulfate. The relation between the crosslinking of membrane proteins and erythrocyte functions (rheological and oxygen transporting) was quantitatively examined. (i) The crosslinking of membrane protein was induced by diamide, without changing the shape and the contents of intracellular organic phosphates (adenylates and 2,3-diphosphoglycerate). The intensity of spectrin 2 in SDS-polyacrylamide gel electrophoresis decreased proportionally to diamide concentration. The percentage decrease in spectrin 2 (using band 3 as an internal standard) was the most appropriate indicator for crosslinking ("% crosslinking'). (ii) The suspension viscosity of erythrocytes increased in proportion to the percentage of crosslinking, in the range of applied shear rates of 3.76-752 s-1. (iii) Erythrocyte deformability (measured by a high-shear rheoscope) was reduced by the crosslinking. The change was detectable even at 5% crosslinking. (iv) Rouleaux formation (measured by a television image analyzer combined with a low-shear rheoscope) was inhibited by the crosslinking. The inhibition was also sensitively detected at more than 5% crosslinking. (v) Hemoglobin in erythrocytes was chemically modified by higher dose of diamide (probably by the binding of diamide with sulfhydryl groups). Also the oxygen affinity of hemoglobin increased and the heme-heme interaction decreased. (vi) The reduction of the crosslinking of membrane proteins by dithiothreitol apparently reversed the intensity of spectrin bands in SDS-polyacrylamide gel electrophoresis and the erythrocyte functions (the suspension viscosity and the deformability), though not completely.  相似文献   

8.
Peripheral proteins of human erythrocytes   总被引:1,自引:0,他引:1  
Water soluble, nonglycosylated proteins have been extracted from human erythrocyte membranes by two different methods and characterized immunochemically and by PAGE. The spectrin peripheral protein complex (PAGE bands 1 + 2) has been equated with two antigens of intermediate mobility in immunoelectrophoretic analysis of crude spectrin developed with antiserum to bands 1 + 2 purified by elution from gels. Nonspectrin proteins, including catalase, remain in close association with isolated membranes, and display solubility properties similar to those of spectrin. Along with spectrin, they may also function in the intact cell as peripheral proteins.  相似文献   

9.
10.
11.
Hemolysis of human erythrocytes as a function of time of exposure to 47.4-54.5 degrees C was measured and correlated to thermal transitions in the membranes of intact erythrocytes as determined by differential scanning calorimetry (DSC). Curves of hemoglobin leakage (a measure of hemolysis) as a function of time have a shoulder region exhibiting no leakage, indicative of the ability to accumulate sublethal damage (i.e., damage not sufficient to cause lysis), followed by a region of leakage approximating pseudo-first-order kinetics. Inverse leakage rates (Do) of 330-21 min were obtained from 47.4-54.5 degrees C, respectively. A relatively high activation energy of 304 +/- 22 kJ/mol was obtained for leakage, eliminating the involvement of metabolic processes but implicating a transition as the rate-limiting step. Membrane protein involvement was suggested by the very low rate (10(-2) of the rate from erythrocytes) and low activation energy (50 +/- 49 kJ/mol) of hemoglobin leakage from liposomes containing no membrane protein. A model was developed that predicts a transition temperature (Tm) for the critical target (rate-limiting step) of 60 degrees C when measured at a scan rate of 1 K/min. DSC scans were obtained from intact erythrocytes and a procedure developed to fit and remove the transition for hemoglobin denaturation which dominated the scan. Three transitions remained (transitions A, B, and C) with Tm values of 50.0, 56.8, and 63.8 degrees C, respectively. These correspond to, but occur at slightly different temperatures than, the A, B, and C transitions of isolated erythrocyte membranes in the same salt solution (Tm = 49.5, 53-58, and 65.5 degrees C, respectively). In addition, the relative enthalpies of the three transitions differ between isolated membranes and erythrocytes, suggestive of membrane alterations occurring during isolation. Thus, all analyses were conducted on DSC scans of intact erythrocytes. The B transition is very broad and probably consists of several transitions. An inflection, which is seen as a distinct peak (transition B3) in fourth-derivative curves, occurs at 60.8 degrees C and correlates well with the predicted Tm of the critical target. Ethanol (2.2%) lowers the Tm of B3 by 4.0-4.5 K, close to the shift of 3.3 K predicted from its effect on hemolysis. Glycerol (10%) has very little effect on both hemolysis and the Tm of B3, but it stabilizes spectrin (delta Tm = 1.5 K) against thermal denaturation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The effects of cross-linking of membrane proteins on hemolysis of human erythrocytes under high pressure (2.0 kbar) were examined. The membrane proteins were cross-linked by oxidation of their SH-groups with diamide (0.05-0.5 mM) under different pressures (1-1,000 bar) at which no hemolysis occurs. As the pressure during diamide treatment was raised, the degree of hemolysis under 2.0 kbar and the quantity of cytoskeletal proteins extracted in a low ionic strength medium were gradually decreased. However, both values were increased by reduction with dithiothreitol. From the determination of membrane SH-groups, it was found that cross-linking of membrane proteins by diamide was accelerated under pressure. Only in erythrocytes treated with diamide under pressure were parts of spectrin and ankyrin, in addition to band 3 and band 4.2 proteins, extracted by using Triton X-100. One- and two-dimensional SDS-PAGE of membrane proteins showed that cross-linking of the membrane with cytoskeletal meshwork through linking proteins, in addition to that of membrane proteins themselves, was formed only in the diamide treatment under pressure. These results indicate that pressure-induced hemolysis is greatly suppressed by the supramolecular-weight polymers formed among membrane proteins, and that the high pressure technique is useful for cross-linking membrane proteins with diamide.  相似文献   

13.
Band 3, the major transmembrane multifunctional protein of human erythrocytes, has been found to be phosphorylated-dephosphorylated on both Ser/Thr- and Tyr-residues by specific protein kinases and protein phosphatases. The results reported here would indicate that the ghosts prepared from human erythrocytes pretreated with DIDS, well known inhibitor of band 3-mediated anion transport, exhibit a markedly reduced Ser/Thr-phosphorylation of spectrin and band 3, when incubated with [gamma-32P]ATP in the presence of Mg2+. On the other hand, Tyr-phosphorylation of this latter protein is practically unchanged or even slightly enhanced. This suggests that Ser/Thr- and Tyr-phosphorylation of band 3 display a different functional role.  相似文献   

14.
Rhnull human erythrocytes lack all the antigens of the Rhesus blood-group system and are associated with mild chronic haemolytic anaemia. These erythrocytes have an abnormal shape and increased osmotic fragility. Labelling studies with the impermeant maleimide N-maleoylmethionine [35S]sulphone show that Rhnull erythrocytes lack two extracellular thiol-group-containing membrane components of apparent mol.wts. 32 000 and 34 000. Immunoprecipitation with mouse monoclonal antibody R6A (which reacts with all normal erythrocytes, but fails to react with Rhnull erythrocytes) specifically precipitates the 34 000-mol.wt. component from normal erythrocytes. Similar studies with human anti-Rh(D) serum shows that this antibody reacts with the 32 000-mol.wt. component. The results suggest that the R6A-binding polypeptide and the Rh(D) polypeptide may be involved in the maintenance of the shape and viability of the human erythrocyte.  相似文献   

15.
The water permeability of human erythrocytes has been monitored by nuclear magnetic resonance (NMR) before and after treatment of the cells with various sulfhydryl reagents. Preincubation of the cells with N-ethylmaleimide (NEM), a non-inhibitory sulfhydryl reagent, results in a faster and more sensitive inhibition of water exchange by mercurials. The inhibition of water exchange by p-chloromercuribenzene sulfonate (PCMBS) was maximal at a binding of approximately 10 nmol PCMBS per mg protein when non-specific sulfhydryl groups are blocked by NEM. Inhibition by PCMBS has been correlated with the binding of 203Hg to erythrocyte membrane proteins. A significant binding of label to band 3 and the polypeptides in band 4.5 occurs, with approximately 1 mol of mercurial bound per mol of protein. Inhibition of water transport by sulfhydryl reagents does not induce major morphological changes in the cells as assessed by freeze-fracture and scanning electron microscopy.  相似文献   

16.
1. Total membrane proteins from freshly isolated erythrocytes of fetal, newborn, and adult baboons were analyzed by electrophoresis. 2. The electrophoretic patterns of proteins from newborns and adults were similar but those from adults and fetuses were different. 3. Four proteins, P165, P155, P75, and P49, with approximate mol. wts of 165,000, 155,000, 75,000, and 49,000, respectively, were present in adult but not in fetal samples. 4. P155 and P49, were glycoproteins; P49 was a cell-surface protein. 5. The membrane protein characteristics of the adult erythrocyte differ from those of the fetal erythrocytes and at least four polypeptides are associated with development of the adult phenotype.  相似文献   

17.
Peroxide-induced membrane damage in human erythrocytes   总被引:2,自引:0,他引:2  
Erythrocytes exposed to H2O2 or t-butyl hydroperoxide (tBHP) exhibited lipid peroxidation and increased passive cation permeability. In the case of tBHP a virtually complete inhibition of both processes was caused by butylated hydroxytoluene (BHT), whereas pretreatment of the cells with CO increased both lipid peroxidation and K+ leakage. In the experiments with H2O2, on the other hand, both BHT and CO strongly inhibited lipid peroxidation, without affecting the increased passive cation permeability. These observations indicate different mechanisms of oxidative damage, induced by H2O2 and tBHP, respectively. The SH-reagent diamide strongly inhibited H2O2-induced K+ leakage, indicating the involvement of SH oxidation in this process. With tBHP, on the contrary, K+ leakage was not significantly influenced by diamide. Thiourea inhibited tBHP-induced K+ leakage, without affecting lipid peroxidation. Together with other experimental evidence this contradicts a rigorous interdependence of tBHP-induced lipid peroxidation and K+ leakage.  相似文献   

18.
A great body of data increasingly point to the cell membrane as an important target for adriamycin (ADR). However, the exact mechanism by which ADR exerts its cytotoxic action through the interaction with the plasma membrane is still unknown. In this study, the interaction of ADR with red blood cells from healthy donors was investigated by freeze-fracturing (FF) and scanning electron microscopy (SEM). The results obtained can be summarized as follows: a) a dose-dependent modification in the intramembrane particle (IMP) distribution was revealed by FF on both fracture faces of the plasma membrane of erythrocytes treated with 50 or 100 microM ADR; b) SEM observations allowed to reveal a discocyte-stomatocyte transition induced by 50 microM ADR and the formation of mottled cells at the higher dose; c) these morphological and ultrastructural changes were not related to lipid peroxidation as demonstrated by experiments with radical scavengers or strong oxidant substances; d) the analysis of IMP density seemed to rule out a segregation process of membrane proteins suggesting that ADR interacts with the plasma membrane by becoming incorporated within the lipid bilayer.  相似文献   

19.
Incubation of erythrocytes with liposomes results in the release of shed vesicles rich in glycosyl-phosphatidylinositol (GPI)-anchored proteins but poor in transmembranous proteins. We investigated the mechanisms of membrane protein polarization by examining the effect of the interaction between spectrin and membrane proteins on the release of a transmembranous protein, band 3, and a GPI-anchored protein, acetylcholinesterase (AChE), from erythrocyte ghosts. Polymerization of spectrin resulted in a 30-fold decrease in the released amount of band 3 per constant amount of shed vesicles but did not affect the amount of released AChE per constant amount of shed vesicles. On the other hand, the amount of released band 3 per constant amount of shed vesicles increased by cleaving the cytoplasmic part of band 3. Our results first demonstrated that the diffusibility of membrane proteins determined by steric hindrance between membrane proteins and protein mesh primarily determines the ease of localization of membrane proteins into shed vesicles. Taken together with the recent biophysical studies, we built a "fence selection model" that retrograding spectrin mesh sweeps diffusing band 3 molecules from the tip of the membrane crenated area toward the entry of the crenated area, but not AChE molecules. Our study describes a novel method for isolation of a large number of vesicles containing special and intact membrane proteins from cells not by using detergents or organic solvents, but by utilizing the fence effect between the cytoskeleton and membrane proteins.  相似文献   

20.
Protoporphyrin-sensitized photooxidation in human red blood cell membranes leads to severe deterioration of membrane structure and function. The membrane damage is caused by direct oxidation of amino acid residues, with subsequent cross-linking of membrane proteins. The chemical nature of these cross-links was studied in model systems, isolated spectrin and red cell ghosts. Cysteine and methionine are not involved in the cross-linking reaction. Further it could be shown that dityrosine formation, the crucial mechanism in oxidative cross-linking of proteins by peroxidase-H2O2 treatment, plays no role in photodynamic cross-linking. Experimental evidence indicated that a secondary reaction between free amino groups and a photooxidation product of histidine, tyrosine or tryptophan is involved in photodynamic cross-linking. This was deduced from the reaction observed between compounds containing a free amino group and photooxidation products of these amino acids, both in model systems, isolated spectrin and erythrocyte ghosts. In accordance, succinylation of free amino groups of membrane proteins or addition of compounds with free amino groups protected against cross-linking. Quantitative data and consideration of the reaction mechanisms of photodynamic oxidation of amino acids make it highly probable that an oxidation product of histidine rather than of tyrosine or tryptophan is involved in the cross-linking reaction, via a nucleophilic addition by free amino groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号