首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The enzymic degradation of cellulose from Valonia macrophysa was observed by electron microscopy and evaluated by electron diffraction. Two types of Valonia samples were subjected to digestion; firstly, intact fragments cut from cell wall material and, secondly, cellulose microcrystals resulting from the acid hydrolysis of entire vesicles. These two substrates, when subjected to the action of crude cellulase complexes either from Trichoderma reesei or Schizophyllum commune were readily degraded. During the degradation, each microfibril or microcrystal became fibrillated into longitudinal crystalline sub-elements having widths ranging from below 2 nm to the full size of the initial Valonia microfibrillar width. These observations are evaluated in term of current theories concerning the topological action of cellulases.  相似文献   

3.
Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes.  相似文献   

4.
Crystalline cellulose Iβ (Avicel) was chemically transformed into cellulose II and IIII producing allomorphs with similar crystallinity indices (ATR-IR and XRD derived). Saccharifications by commercial cellulases at arrayed solids loadings showed cellulose IIII was more readily hydrolysable and less susceptible to increased dry solids levels than cellulose Iβ and II. Analysis by dynamic vapor sorption revealed cellulose II has a distinctively higher absorptive capacity than cellulose I and IIII. When equally hydrated (g water/g cellulose), low-field nuclear magnetic resonance (LF-NMR) relaxometry showed that cellulose II, on average, most constrained water while cellulase IIII left the most free water. LF-NMR spin–spin relaxation time distribution profiles representing distinct water pools suggest cellulose IIII had the most restricted pool and changes in water distribution during enzymatic saccharification were most dramatic with respect to cellulose IIII compared to celluloses Iβ and II.  相似文献   

5.
1-trans-Parinaroyl-2-linoleoyl-sn-glycero-3-phosphocholine (1–18:4-2-18:2-GPC) was synthesized from lecithin and parinaric acid by the following route: diacyl-GPCGPC → 1,2-di-18:4-GPC (I) → 1–18:4-GPC (II) → 1–18:4-2-18:2-GPC (III). The identity of I, II and III was established by fast atom bombardment (FAB) mass spectrometry of the intact molecules as well as electron impact (E1) mass spectrometry of the corresponding O-TMS derivatives obtained after phospholipase C treatment and silylation. Temperature dependent phase transition of phospholipid liposomes was performed in the presence of III.  相似文献   

6.
In addition to its usual native crystalline form (cellulose I), cellulose can exist in a variety of alternative crystalline forms (allomorphs) which differ in their unit cell dimensions, chain packing schemes, and hydrogen bonding relationships. We prepared, by various chemical treatments, four different alternative allomorphs, along with an amorphous (noncrystalline) cellulose which retained its original molecular weight. We then examined the kinetics of degradation of these materials by two species of ruminal bacteria and by inocula from two bovine rumens. Ruminococcus flavefaciens FD-1 and Fibrobacter succinogenes S85 were similar to one another in their relative rates of digestion of the different celluloses, which proceeded in the following order: amorphous > IIII > IVI > IIIII > I > II. Unlike F. succinogenes, R. flavefaciens did not degrade cellulose II, even after an incubation of 3 weeks. Comparisons of the structural features of these allomorphs with their digestion kinetics suggest that degradation is enhanced by skewing of adjacent sheets in the microfibril, but is inhibited by intersheet hydrogen bonding and by antiparallelism in adjacent sheets. Mixed microflora from the bovine rumens showed in vitro digestion rates quite different from one another and from those of both of the two pure bacterial cultures, suggesting that R. flavefaciens and F. succinogenes (purportedly among the most active of the cellulolytic bacteria in the rumen) either behave differently in the ruminal ecosystem from the way they do in pure culture or did not play a major role in cellulose digestion in these ruminal samples.  相似文献   

7.
Preparation of cellulose films from solution of bacterial cellulose in NMMO   总被引:1,自引:0,他引:1  
Bacterial cellulose (BC) was dissolved in N-methylmorpholine N-oxide (NMMO) to prepare regenerated BC films (RBC) with phase inversion. The solubility of BC, supermolecule on structure, morphology, thermal and physical properties of the films were investigated by Fourier transform infrared spectroscopy (FT-IR), solid-state cross polarization/magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR), wide-angle X-ray diffraction (WAXD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The investigation suggested BC was dissolved completely in NMMO. From the C6 signal shifts to the amorphous area, the crystallinity of materials decreased from 79.20% to 38.17%, and the transformation from cellulose I to II occurred. It was also found that the banded structure of the native materials was replaced by homogeneous and densified sections, so RBC films had better mechanical and barrier properties, and do thermal stability was similar to that of the native BC.  相似文献   

8.
《BBA》2020,1861(11):148264
The physical and functional organisation of the OXPHOS system in mitochondria in vivo remains elusive. At present, different models of OXPHOS arrangement, representing either highly ordered respiratory strings or, vice versa, a set of randomly dispersed supercomplexes and respiratory complexes, have been suggested. In the present study, we examined a supramolecular arrangement of the OXPHOS system in pea shoot mitochondria using digitonin solubilisation of its constituents, which were further analysed by classical BN-related techniques and a multidimensional gel electrophoresis system when required. As a result, in addition to supercomplexes I1III2, I1III2IVn and III2IV12, dimer V2, and individual complexes I-V previously detected in plant mitochondria, new OXPHOS structures were also revealed. Of them, (1) a megacomplex (IIxIIIyIVz)n including complex II, (2) respirasomes I2III4IVn with two copies of complex I and dimeric complex III2, (3) a minor new supercomplex IV1Va2 comigrating with I1III2, and (4) a second minor form of ATP synthase, Va, were found. The activity of singular complexes I, IV, and V was higher than the activity of the associated forms. The detection of new supercomplex IV1Va2, along with assemblies I1III2 and I12III24IVn, prompted us to suggest the occurrence of in vivo oxphosomes comprising complexes I, III2, IV, and V. The putative oxphosome's stoichiometry, historical background, assumed functional significance, and subcompartmental location are discussed herein.  相似文献   

9.
W. Claffey  J. Blackwell 《Biopolymers》1976,15(10):1903-1915
The crystal structure of native cellulose (Valonia) has been analyzed by electron diffraction. Possible models for the structure were refined by rigid-body least squares methods, which incorporated parameters defining the preferred orientation of the fibrils around their long axes in the cell wall lamellae. The structure was found to consist of an array of chains having the same sense (i.e., parallel), with packing parameters similar to those recently determined by X-ray diffraction. The eight-chain unit cell could be approximated adequately by a two-chain monoclinic unit cell with dimensions a = 8.18 Å, b = 7.84 Å, c = 10.38 Å (fiber axis), and γ = 97.04°; the space group is P21.  相似文献   

10.
The DNA fragment encoding the cellulose binding domain of endoglucanase III (CBDEG III) from Trichoderma reesei was subcloned and expressed in E. coli. The CBDEG III had a high affinity for cellulose. The morphological and structural changes of cellulose after treatment with CBDEG III indicated a 17% decrease in number of hydrogen bonds and a 16.5% decrease in crystalline index. X-ray diffraction and IR spectra analyses indicated that the destabilization and breakage of the hydrogen bonds in crystalline cellulose accounted for the non-hydrolytic disruption of the structure of cellulose.  相似文献   

11.
Mitochondrial dysfunction is implicated in the etiology and pathogenesis of numerous human disorders involving tissues with high energy demand. Murine models are widely used to elucidate genetic determinants of phenotypes relevant to human disease, with recent studies of C57BL/6J (B6), DBA/2J (D2) and B6xD2 populations implicating naturally occurring genetic variation in mitochondrial function/dysfunction. Using blue native polyacrylamide gel electrophoresis, immunoblots and in‐gel activity analyses of complexes I, II, III, IV and V, our studies are the first to assess abundance, organization and catalytic activity of mitochondrial respiratory complexes and supercomplexes in mouse brain. Remarkable strain differences in supercomplex assembly and associated activity are evident, without differences in individual complexes I, II, III or IV. Supercomplexes I1III2IV2–3 exhibit robust complex III immunoreactivity and activities of complexes I and IV in D2, but with little detected in B6 for I1III2IV2, and I1III2IV3 is not detected in B6. I1III2IV1 and I1III2 are abundant and catalytically active in both strains, but significantly more so in B6. Furthermore, while supercomplex III2IV1 is abundant in D2, none is detected in B6. In aggregate, these results indicate a shift toward more highly assembled supercomplexes in D2. Respiratory supercomplexes are thought to increase electron flow efficiency and individual complex stability, and to reduce electron leak and generation of reactive oxygen species. Our results provide a framework to begin assessing the role of respiratory complex suprastructure in genetic vulnerability and treatment for a wide variety of mitochondrial‐related disorders .  相似文献   

12.
The cellulose-binding domain (CBD) is the second important and the most wide-spread element of cellulase structure involved in cellulose transformation with a great structural diversity and a range of adsorption behavior toward different types of cellulosic materials. The effect of the CBD from Clostridium cellulovorans on the supramolecular structure of three different sources of cellulose (cotton cellulose, spruce dissolving pulp, and cellulose linters) was studied. Fourier-transform infrared spectroscopy (FTIR) was used to record amides I and II absorption bands of cotton cellulose treated with CBD. Structural changes as weakening and splitting of the hydrogen bonds within the cellulose chains after CBD adsorption were observed. The decrease of relative crystallinity index of the treated celluloses was confirmed by FTIR spectroscopy and X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to confirm the binding of the CBD on the cellulose surface and the changing of the cellulose morphology.  相似文献   

13.
The orientation of the triclinic phase of cellulose in the cell wall of Valonia ventricosa J. Agardh was investigated by X-ray- and electron-diffraction analysis. In addition to the well-documented uniplanar-axial organization of the cell wall which requires that the a * axis should be always perpendicular to the wall surface, the direction of this axis was also found to be pointing outward from the plasma membrane side of the wall. This unidirectionality was persistent throughout the various layers that constitute the cell wall and also for the three microfibrillar orientations that occur in Valonia cell walls. The unidirectionality of the a * axis indicates, in particular, that the Valonia cellulose microfibrils are not twisted along their axis. These observations are consistent with a cellulose biosynthetic scheme where a close association exists between terminal-complex orientations and those of the cellulose microfibrils. In this context, the unidirectionality of the a * axis of cellulose seems to be related to the restricted mobility of the terminal complexes which are able to slide in the plasma membrane but not to rotate along their long axis.Abbreviations TC terminal complex This work was initiated during a visit of J.F.R at Grenoble in the framework of a France-Québec exchange program. J.S. was recipient of a CNRS fellowship. The diagram in Fig. 8 was kindly drawn for us by Miss Yukie Saito from the Department of Forest Products, the University of Tokyo.  相似文献   

14.
The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo.  相似文献   

15.
Spinach (Spinacia oleracea L.) chloroplasts solubilized by digitonin were separated into five fractions by sucrose density gradient centrifugation. Three of the fractions, FI, FII, and FIII, corresponding to photosystem I, photosystem II, and the chlorophyll a/b complex, were purified further by two steps of diethylaminoethyl-cellulose chromatography followed by electrofocusing on an Ampholine column. The polypeptide patterns of the fractions were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the spectral properties of the fractions at −196 C determined by absorption spectra, fourth derivative curves of the absorption spectra, fluorescence emission spectra, and fluorescence excitation spectra. The activity of purified FII (photosystem II) was also assayed by the photoreduction of dichlorophenol-indophenol at room temperature using 1,5-diphenylcarbohydrazine as the electron donor and by the photoreduction of C-550 at −196 C. The different fractions showed unique polypeptide patterns and unique sets of low temperature-absorbing forms of chlorophyll. The fluorescence emission spectra of FI, FII, and FIII at −196 C were also unique with maxima at 734, 685 and 681 nm, respectively. FI showed negligible emission at wavelengths shorter than 700 nm and the long wavelength tails of FII and FIII in the 730 nm region were relatively small (approximately 10% of emission of their wavelength maxima). Addition of 0.1% Triton to FI and FII caused the longer wavelength absorbing forms of chlorophyll to shift to 670 nm and the fluorescence emission maxima (of both fractions) to shift to 679 nm at −196 C with an increase in the yield of fluorescence especially in the case of FI.  相似文献   

16.
Microcrystalline cellulose (MCC)/nano-SiO2 composite fibers were processed from solutions in 1-allyl-3-methylimidazolium chloride (AMIMCl) by the method of dry-jet wet spinning. The oscillatory shear measurements demonstrated that the gel network formed above 10 wt% nano-SiO2 and the complex viscosity increased with increasing nano-SiO2. Remarkably, the shear viscosity of the nanofluids was even lower than solutions without nano-SiO2 under high shear rates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that well-dispersed particles exhibit strong interfacial interactions with cellulose matrix. Measurements on wide-angle X-ray diffraction (WAXD) indicated that the regenerated cellulose and nanocomposite fibers were the typical cellulose II crystalline form, which was different from the native cellulose with the polymorph of Type I. The tensile strength of the nanocomposite fibers was larger than that of pure cellulose fiber and showed a tendency to increase and then decrease with increasing nano-SiO2. Furthermore, the nanocomposite fibers exhibited improved thermal stability.  相似文献   

17.
The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called “respiratory supercomplexes”. Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V2). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I + III2, III2 + IV1, V2, I + III2 + IV1 and I2 + III2 in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I2 + III2 + IV2 supercomplex, could be determined in a coherent way. The maps also show that the I + III2 + IV1 supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I2 + III2 + IV2 units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.  相似文献   

18.
《Inorganica chimica acta》1988,149(2):259-264
The bis(N-alkylsalicylaldiminato)nickel(II) complexes Ni(R-sal)2 with R = CH(CH2OH)CH(OH)Ph (I), R = CH(CH3)CH(OH)Ph (II) and R = CH2CH2Ph (III; Ph = phenyl) were prepared and characterized. In the solid state I and II are paramagnetic (μ = 3.2 and 3.3 BM at 20 °C, respectively), whereas III is diamagnetic. It follows from the UV-Vis spectra that in acetone solution I is six-coordinate octahedral and III is four-coordinate planar, the spectrum of II showing characteristics of both modes of coordination. Vis spectrophotometry and stopped-flow spectrophotometry were applied to study the kinetics of ligand substitution in I–III by H2salen (= N,N′-disalicylidene-ethylenediamine) in the solvent acetone at different temperatures. The kinetics follow a second-order rate law, rate = k[H2-salen] [complex]. At 20 °C the sequence of rate constants is k(III):k(II):k(I) = 11 850:40.6:1. The activation parameters are ΔH(I) = 112, ΔH(II) = 40.7, ΔH(III) = 35.7 kJ mol−1 and ΔS(I) = 92, ΔS(II) = −103, ΔS(III) = −89 J K−1 mol−1. The enormous difference in rate between complexes I, II and III, which is less pronounced in methanol, is attributed to the existence of a fast equilibrium planar ⇌ octahedral, which is established in the case of I and II by intramolecular octahedral coordination through the hydroxyl groups present in the organic group R. An A-mechanism is suggested to control the substitution in the sense that the entering ligand attacks the four-coordinate planar complex, the octahedral complex being kinetically inert.  相似文献   

19.
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO2 wafers at 60 °C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (IC), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion.  相似文献   

20.
Ion transport in the giant celled marine alga, Valonia ventricosa, was studied during internal perfusion and short-circuiting of the vacuole potential. The perfusing and bathing solutions were similar to natural Valonia sap and contained the following concentrations of major ions: Na 51, K 618, and Cl 652 mM. The average short-circuit current (I sc) was 97 pEq/cm2 sec (inward positive current), and the average open-circuit potential difference (PD) was 74 mv (vacuole positive to external solution). Perfused and short-circuited cells showed a small net influx of Na (2.0 pEq/cm2 sec) and large net influxes of K (80 pEq/cm2 sec) and Cl (50 pEq/cm2 sec). Unidirectional K influx was proportional to I sc, but more than one-half of the I sc remained unaccounted for. Both the I sc and PD were partly light-dependent, declining rapidly during the first 1–2 min of darkness. Ouabain (5 x 10-4 M) had little effect on the influx of Na or K and had no effect on I inf or PD. Fluid was absorbed at a rate of about 93 pliter/cm2 sec. Reversing the direction of fluid movement by adding mannitol to the outside solution had little effect on ion movements. The ionic and electrical properties of normal and perfused cells of Valonia are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号