首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mazhul' VM  Shcherbin DG 《Biofizika》2000,45(2):283-287
The room temperature phosphorescence of lipid peroxidation products in the composition of isolated human erythrocyte membranes was registered, and its kinetic parameters were determined. The excitation and emission spectra of phosphorescence of lipid peroxidation products in the composition of erythrocyte membranes at 0 degree C measured. The nature of lipid peroxidation products possessing the phosphorescencing capacity was discussed. Based on the analysis of temperature dependences of the intensity and lifetimes of phosphorescence of lipid peroxidation products in the range -2 divided by 26 degrees C, it is concluded that the deactivation of excited triplet states of lipid chromophores was realized by the dynamic type.  相似文献   

2.
1. The effects of eugenol on lipid peroxidation catalyzed by hydrogen peroxide (H2O2) or benzoyl peroxide (BPO) in the presence of copper ions were studied in human erythrocyte membranes. 2. The production of hydroxyl radicals was suggested in the peroxidation system catalyzed by H2O2/Cu2+. 3. H2O2/Cu2+-dependent peroxidation was inhibited by eugenol in a concentration-dependent manner; peroxidation was inhibited 62% by 200 microM eugenol. 4. In the presence of eugenol, the peroxidation catalyzed by BPO/Cu2+ was inhibited in a concentration-dependent manner, and more than 100 microM eugenol completely inhibited peroxidation. 5. The inhibitory effect of eugenol was non-competitive against Cu2+ in H2O2/Cu2+- and BPO/Cu2+-dependent peroxidation. 6. It is suggested that eugenol inhibits formation of hydroxyl radicals.  相似文献   

3.
2,2'-Azo-bis-(2-amidinopropane) induces the thermal lipid peroxidation of red blood cells membranes by a mechanism that is not iron dependent. The peroxidation rate, as assessed by oxygen uptake or visible chemiluminescence measurements, can be diminished by micromolar concentrations of desferrioxamine (DF), with a median inhibitory concentration (the concentration of DF that reduces the lipid peroxidation rate to 50% of that observed without scavengers addition) of 10 microM. In these conditions, the DF/Fe3+ (1:2) complex is nearly five times less efficient than DF. The present data show that DF is able to trap the initiator radicals and/or the free radicals involved in the lipid peroxidative chain at micromolar concentrations, range in which the agent cannot be used as a general test for iron involvement.  相似文献   

4.
5.
cis-Parinaric acid (PnA), cis-trans-trans-cis-9, 11, 13, 15-octadecatetraenoic acid, is fluorescent (epsilon = 74,000 at 324 nm) when partitioned into a lipid environment and the fluorescence is destroyed upon reaction with free radicals. It has been used to monitor semiquantitatively free-radical-induced lipid peroxidation in human erythrocyte membranes. We have applied this assay to the quantitative evaluation of potential antioxidants. The kinetics of the reaction of PnA with free radicals were measured in erythrocyte ghosts. After initiation of free radical generation by cumene hydroperoxide and cupric ion, a steady-state rate of fluorescence decay is rapidly established. In the steady state the oxidation of PnA and, hence, the loss of fluorescence is a first-order process. In the presence of antioxidants, such as vitamin E, the rate constant of fluorescence loss decreases, thereby indicating that the antioxidant decreases the steady-state concentration of free radicals. By adding various concentrations of potential antioxidants, pseudo-first-order rate constants [k1] which measure the reactivity of antioxidants with free radicals were determined. Results show that, when incorporated into erythrocyte membranes, U-78, 517f, a vitamin E analog, is a potent free radical scavenger, being approximately 50% as effective as vitamin E and 10-15 times more potent than the aminosteroids evaluated (see Table 1).  相似文献   

6.
1. Effect of ferric ions (Fe3+) on the lipid peroxidation catalyzed by copper ions (Cu2+) and hydrogen peroxide (H2O2) was studied in human erythrocyte membranes. 2. The formation of thiobarbituric acid-reactive products elicited by CuCl2/H2O2 was inhibited by FeCl3 in a concentration-dependent manner; 0.25 mM FeCl3 were enough to cause 50% inhibition of the formation of peroxides. 3. The inhibitory effect of FeCl3 is not due to competition against Cu2+. 4. FeCl3 inhibited the initiation, but did not inhibit the propagation of Cu2+/H2O2-catalyzing lipid peroxidation. 5. In the heat- or trypsin-treated erythrocyte membranes, FeCl3 had no inhibitory effect on Cu2+/H2O2-catalyzing lipid peroxidation. 6. Sodium azide, an inhibitor of catalase, had no effect on the inhibitory effect of FeCl3. 7. These results suggest that a protein factor(s), which is not catalase, is involved in the inhibition of Cu2+/H2O2-catalyzing lipid peroxidation by Fe3+.  相似文献   

7.
The recently developed parinaric acid assay is shown to offer possibilities for studying peroxidation processes in biological membrane systems. Taking the human erythrocyte membrane as a model, several initiating systems were investigated, as well as the effect of residual hemoglobin in ghost membrane preparations. The effectivity of a radical generating system appeared to be strongly dependent upon whether radicals are generated at the membrane level or in the water phase. Thus, cumene hydroperoxide at concentrations of 1.0-1.5 mM was found to be a very efficient initiator of peroxidation in combination with submicromolar levels of hemin-Fe3+ as membrane-bound cofactor. In combination with cumene hydroperoxide, membrane-bound hemoglobin appeared to be about 6-times more effective in promoting peroxidation than hemoglobin in the water phase. Results comparing the behaviour of normal and sickle erythrocyte ghost suspensions in the peroxidation assay suggest that the increased oxidative stress on sickle erythrocyte membranes could be due to enhanced membrane binding of sickle hemoglobin, but also partly to a characteristically higher capability of sickle hemoglobin to promote peroxidation. The order of peroxidation-promoting capabilities that could be derived from the experiments was hemin greater than sickle hemoglobin greater than normal hemoglobin.  相似文献   

8.
Sodium nitroprusside (SNP) is a nitric oxide (?NO) donor in vitro and in vivo. In this paper the time variation of the intracellular water proton nuclear magnetic resonance (NMR) effective relaxation time T'(2a) in SNP-treated human erythrocyte suspensions, containing 10 mM membrane impermeable paramagnetic MnCl2, has been measured. The observed T'(2a) time-course was analyzed in terms of the two mechanisms by which released ?NO affects T'(2a). These are, respectively, enhancement of the intracellular water proton intrinsic NMR relaxation rate 1/T(2a) by paramagnetism of ?NO subsequently bonded to iron atoms of intracellular deoxyhemoglobin, and suppression of diffusional water permeability P(d) as a consequence of nitrosylation of aquaporin-1 (AQP1) channel Cys189, either by direct reaction with ?NO or with one of the ?NO oxidation products, such as N2O3. The bound ?NO on the Cys189 thiol residue appears to impose a less efficient barrier to water permeation through AQP1 than the larger carboxyphenylmercuryl residue from p-chloromercuribenzoate. The effect of ?NO on P(d) is discussed in terms of NO-induced vasodilation.  相似文献   

9.
10.
Abstract

The antioxidant activity of capsaicin (CAP) was measured in the oxidation of methyl linoleate (ML) in homogeneous solution, of ML micelles in aqueous dispersions and also of soybean phosphatidylcholine liposomal membrane, and was compared to that of -tocopherol (-TOH) which is one of the most important antioxidants in vivo. The reactivity of CAP toward galvinoxyl (a model phenoxyl radical) in acetonitrile solution was found to be much smaller than that of -TOH, suggesting that the radical scavenging activity of CAP is much weaker than that of -TOH. In fact, in homogeneous acetonitrile solution where the antioxidant activity is determined primarily by the chemical activity of the antioxidant toward peroxyl radicals, CAP inhibited the oxidation of ML much less efficiently than -TOH and a clear induction period was not observed. The antioxidant activity of CAP was found to be about 60 times smaller than that of -TOH in homogeneous solution. However, in micelle oxidation, the difference in antioxidant activity of the two antioxidants was much smaller than in homogeneous solution. Furthermore, in the membrane, CAP inhibited the oxidation almost as effectively as -TOH. These results suggest that CAP can act as an antioxidant in the biomembrane.  相似文献   

11.
The purpose of the present study was to examine the antioxidant activity of two typical oils obtained from two vegetables, bitter gourd seed and snake gourd seed, containing two different isomers of conjugated linolenic acid (CLnA) against oxidative stress induced by sodium arsenite in relation to tissue lipid peroxidation and inflammation. Male albino rats were taken as subject and divided into six groups: Group 1 was control and Group 2 was treated with sodium arsenite (Sa; 10mg/Kg BW); Groups 3-6 were orally treated with different doses of seed oils maintaining definite concentration of CLnA isomers (0.5% and 1.0% of total lipid for each CLnA isomer) along with sodium arsenite. There was significant increase in lipid peroxidation, pro-oxidant enzyme activity and decrease in antioxidant enzyme activity in brain due to Sa administration. Decrease in total protein content was also observed in plasma, liver and brain of Sa treated group. Significant decrease in phospholipid content and increase in total lipid content and cholesterol content were observed in arsenite treated group. There was significant increase in relative organ weight of liver due to Sa administration. Fatty acid profile of liver and brain lipid shows significant (P<0.05) reduction in most of the polyunsaturated fatty acids and increase in arachidonic acid (20:4n-6) (75.23%) due to inflammation after arsenite treatment. Administration of experimental oils made almost complete restoration of those altered parameters. Overall, these two oils were effective in protecting tissue lipid profiles which were altered due to oxidative stress.  相似文献   

12.
This study examined whether maturity of rat brain may be relevant for the sensitivity to diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 on [3H]glutamate uptake and release, in vitro. Brain synaptosomes were isolated from young (14- and 30-day-old) and adult rats and incubated at different concentrations of (PhSe)2 or (PhTe)2. The results demonstrated that the highest concentration (100 μM) of (PhSe)2 and (PhTe)2 inhibited the [3H]glutamate uptake by synaptosomes of brain at all ages. In the adult brain, (PhSe)2 did not inhibit the [3H]glutamate uptake at the lowest concentration (10 μM). The highest concentration of (PhTe)2 inhibited the [3H]glutamate uptake more in the 14-day-old than in the 30-day-old rats or adult rats. In the 30-day-old animals, the highest concentration of (PhSe)2, and the lowest concentration of (PhTe)2, increased the basal [3H]glutamate release. At the highest concentration, (PhTe)2 increased the basal and K+-stimulated glutamate release on all ages evaluated. The results suggest that (PhSe)2 and (PhTe)2 caused alterations on the homeostasis of the glutamatergic system at the pre-synaptic level. These alterations were age-, concentration-, and compound-dependent. The maturity of rat brain is relevant for the glutamatergic system sensitivity to (PhSe)2 and (PhTe)2 .  相似文献   

13.
Ferric ion was found to stimulate the peroxidation of erythrocyte membrane lipids, causing a biphasic and concentration-dependent increase in the formation of thiobarbituric acid reactive substances. Ascorbic acid and reduced glutathione were able to enhance this lipid peroxidation, presumably by facilitating the reduction of ferric ion. Iron chelators, such as phytic acid, ethylenediaminetetraacetic acid and uric acid, and the chain-reaction-terminating antioxidant butylated hydroxytoluene suppressed the ferric ion-induced peroxidation by actions not likely related to hydroxyl radical scavenging. The effectiveness of phytic acid, a naturally occurring antioxidant, in the inhibition of iron-dependent lipid peroxidation suggests its possible therapeutic application as a non-toxic iron chelator for ameliorating the extent of oxy-radical-induced tissue damage.Abbreviations BHT Butylated Hydroxytoluene - EDTA Ethylenediaminetetraacetic Acid - GSH Reduced Glutathione - TBA 2-Thiobarbituric Acid - TBARS 2-Thiobarbituric Acid Reactive Substances  相似文献   

14.
Eicosapentaenoic acid (EPA) is one of the major dietary polyunsaturated fatty acids and induces apoptosis in several cancer cells. In this study, the EPA induced lipid peroxidation and response of antioxidative enzymes have been investigated in rat pheochromocytoma PC12 cells to elucidate the mechanisms of apoptosis induced by the polyunsaturated fatty acid EPA. We have analyzed superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and glutathione (GSH) contents in PC12 cells after exposure to different concentrations of EPA. Lipid peroxidation was shown to increase in the presence of EPA as an indication of the oxidative damage. Lipid peroxidation was enhanced by EPA in a dose-dependent manner, and the loss of cell viability was partially reversed by vitamin E. In the case of antioxidant enzyme activities, SOD and GPX activities and GSH contents increased significantly at 50 μmol/L EPA and were respectively 2.41-fold (p < 0.01), 3.49-fold (p < 0.05), and 1.43-fold (p < 0.05) higher than controls. The CAT activity at 10 μmol/L had the highest value and was increased by 25.83% (p < 0.05) compared to control. The results suggest that in PC12 cells the mechanism of apoptosis induced by EPA may be partly due to lipid peroxidation.  相似文献   

15.
The antioxidant ability of thiol compounds has been the subject of much of the current research about oxidative stress. The direct scavenging of hydroxyl radicals by thiols has been suggested as their protection mechanisms. Nevertheless, the interaction of thiols with reactive radicals can generate thiyl radicals, which, in turn, may impart a pro-oxidant function. The purpose of this study has been to establish the effect of the thiol compounds N -acetyl- l -cysteine (NAC) and glutathione (GSH) against the peroxidative processes involving membrane lipids. The results obtained support the ability of NAC and GSH to suppress the 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH)-dependent or to enhance the Fe 2+ /H 2 O 2 -dependent oxidative actions. The evaluation of thiobarbituric acid reactive substances (TBARS) production, the study of the influence of oxidants on membrane fluidity and the measurements of the changes in the fluorescence of bilayer probes, such as 3-( p -(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH-PA), have shown the antioxidant and pro-oxidant effects of both NAC and GSH. Also their dependence on the nature of the radicals generated by the oxidative systems used has been shown. The use of ESR spectroscopy has allowed us to establish the ability of these compounds to scavenge the AAPH-derived radicals, to determine the formation of thiyl radicals in the iron-mediated oxidation and to evaluate the enhanced production of hydroxyl radicals by NAC and GSH.  相似文献   

16.
Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 μM; (c) X-ray diffraction studies showed that PPA in the 0.1–0.5 mM range induced increasing structural perturbation to DMPC, but no effects on DMPE multibilayers were detected.  相似文献   

17.
In vitro effects of ozone on human erythrocyte membranes: an EPR study   总被引:4,自引:0,他引:4  
The effects of ozone at different concentrations (10, 30, 45 g/m3) on fluidity and thermotropic properties of erythrocyte membranes were investigated by EPR using two spin probes: 5-doxylstearic acid (5-DSA) and 16-doxylstearic acid (16-DSA). The effect of ozone on the erythrocyte membrane fluidity was a dose-dependent process. The ozone at concentration of 10 g/m3 caused rigidization of the membrane while at concentration of 45 g/m3 increased fluidity both on the surface and in the deeper hydrocarbon region of the membrane. Temperature transitions close to the polar heads region (monitored by 5-DSA) were not sensitive to an increase in ozone concentration. In the case of 16-DSA, low temperature thermotropic transition (around 20 degrees C) gradually decreased with the increase of ozone concentration. High temperature transition (around 40 degrees C) significantly differed at the ozone concentration of 10 g/m3 and 45 g/m3, being higher and lower, respectively, as compared to untreated cells. For the ozone concentration of 45 g/m3 the disappearance of the low temperature break and the appearance of two breaks at 37 degrees C and 16 degrees C were observed.  相似文献   

18.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

19.
The effect of post-treatment with diphenyl diselenide on liver damage induced by 2-nitropropane (2-NP) was examined in male rats. Rats were pre-treated with a single dose of 2-NP (100 mg/kg body weight dissolved in canola oil). Afterward, the animals were post-treated with a dose of diphenyl diselenide (10, 50 or 100 micromol/kg). The parameters that indicate tissue damage such as liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), urea and creatinine were determined. Since the liver damage induced by 2-NP is related to oxidative damage, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and ascorbic acid level were also evaluated. Diphenyl diselenide (50 and 100 micromol/kg) effectively restored the increase of ALT and AST activities and urea level when compared to the 2-NP group. At the higher dose, diphenyl diselenide decreased GGT activity. Treatment with diphenyl diselenide, at all doses, effectively ameliorated the increase of hepatic and renal lipid peroxidation when compared to 2-NP group. 2-NP reduced CAT activity and neither alter SOD activity nor ascorbic acid level. This study points out the involvement of CAT activity in 2-NP-induced acute liver damage and suggests that the post-treatment with diphenyl diselenide was effective in restoring the hepatic damage induced by 2-NP.  相似文献   

20.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号