首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rabbit bone-marrow macrophages and fibroblasts were cultured, independently or together, with pieces of 35S-labelled cartilage or at the surface of dried [14C]collagen gels. Each type of cell, cultivated alone, rapidly degraded the proteoglycan of cartilage, but only the fibroblasts degraded collagen. The co-culture of both types of cell had no consistent effect on the rate of proteoglycan degradation, but it stimulated the rate of collagen degradation. In parallel, the accumulation of collagenase in the culture fluid was enhanced but not that of neutral proteinase. Coinditioned media from macrophage cultures added to cultures of fibroblasts had the same effect as the living macrophages in stimulating the production of collagenase. Their action was itself enhanced when the macrophages had been activated by concanavalin A-stimulated spleen-cell factors. These data suggest that fibroblasts may act as effector cells in producing collagenase and degrading collagen in response to soluble factors released by macrophages under the control of lymphocyte factors.  相似文献   

2.
The frequently observed instability of neutral salt solutions of native collagen extracted from various sources and partially purified by standard procedures has been studied by disc electrophoresis in polyacrylamide gel and by electron microscopic examination of segment long spacing crystallites. The phenomenon has revealed time and temperature dependency, pH optima near neutrality, and inhibition by sodium EDTA and serum. In addition, collagen breakdown has been found to be quantitatively related to the state of aggregation of the substrate, being more marked in reconstituted collagen gels than in collagen in solution. A typical pattern of animal collagenase degradation of native collagen into two fragments designated as TCA and TCB has been observed under certain conditions. It is concluded that the degradation of native collagen in neutral salt solution is due to a specific collagenase, and that this enzyme probably remains bound to collagen throughout the process of extraction and partial purification. Experiments with gelatin suggest that, in addition to collagenase, a nonspecific proteolytic activity may also be present in collagen preparations.  相似文献   

3.
The inducible nature of an extracellular collagenase produced by a marine Vibrio (Vibrio B-30, ATCC 21250) was demonstrated by observing the increase in extracellular collagenase activity after the addition of collagen to cell cultures in the latter part of the exponential growth phase. When collagenase-hydrolyzed collagen was added, the lag time required before collagenase production was detected decreased significantly compared with cultures receiving collagen. Cells preinduced to synthesize collagenase did not produce the enzyme when collagen was removed from the culture medium. Incorporation of penicillin G had no effect on final collagenase activity levels in suspensions of Vibrio B-30 in complete medium supplemented with collagen. However, chloramphenicol and tetracycline inhibited collagenase production, indicating that de novo protein synthesis was necessary for the appearance of activity. Attempts to isolate the inducing substance(s) involved filtering hydrolyzed collagen through a series of ultrafiltration membranes. The lowest-molecular-weight fraction of collagen hydrolysate with inducing ability was between 1,000 and 10,000. Gel filtration of this fraction on Sephadex G-50 resulted in the appearance of three protein peaks, two of which were capable of inducing collagenase production. Results from amino acid composition and N-terminal amino acid analysis suggest that the inducing substance originates from the polar helical portion of the collagen molecule.  相似文献   

4.
5.
6.
Human skin fibroblasts in monolayer culture synthesize and secrete precursor forms of collagen into the culture medium. The type I collagen precursor, the major precursor in the culture medium, was isolated on DEAE cellulose chromatography and subjected to mammalian collagenase cleavage. The amino terminal cleavage fragments had a higher molecular weight than α1A and α2A, but did not contain interchain disulfide bonds. The carboxy-terminal cleavage fragments formed high molecular weight aggregates which contained interchain disulfide bonds. These results indicate that human type I procollagen contains noncollagenous amino and carboxy-terminal extension peptides and that all of the interchain disulfide bonds are on the carboxy-terminal portion of the molecule.  相似文献   

7.
Summary The net amount of collagen produced and deposited by fibroblasts in cell culture is determined by the rate of collagen synthesis as well as the rate of collagen degradation. Although collagen synthesis can be analyzed by several techniques, it is more difficult to measure collagen degradation. Breakdown of collagen depends upon the activity of a family of structurally and catalytically related mammalian enzymes termed matrix metalloproteinases (MMPs). Interstitial collagenase (MMP1) initiates the cleavage of fibrillar collagen, whereas gelatinases (MMP2 and MMP9) digest the denatured collagen fragments. A method has been developed to quantitate the activity of collagenase (MMP1) and gelatinase (MMP9) in conditioned medium from fibroblast cell cultures. The assay, which uses the fluorogenic substrate Dnp-Pro-Cha-Gly-Cys(Me)-His-Ala-Lys(Nma)NH2, is technically simple and amenable to high throughput analysis. Addition of specific inhibitors of the metalloproteinases allows for simultaneous measurement of both collagenase and gelatinase activity.  相似文献   

8.
Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase similar to that found in bovine articular chondrocytes and extracts of bovine scapular cartilage. These cells synthesize normal levels of cartilage type proteoglycans when cultured in serum free medium with insulin. Collagen synthesis is also increased when insulin is added to chondrosarcoma chondrocytes. We have demonstrated that insulin stimulates collagenase inhibitor production by these chondrocytes. Enhancement of inhibitory activity occurs over the range of 10 to 1000 ng/ml. A 3.2 fold stimulation was observed at a concentration of 1 microgram/ml. There was a lag period of 24 to 48 hours before the insulin effect became evident. Latent or active collagenase was not detectable under these conditions. These results suggest that the hormone insulin controls the levels of collagen in this tumor by stimulating synthesis of collagen and inhibitors of collagenase.  相似文献   

9.
A rat osteosarcoma cell clone (ROS 17/2), and osteoblast-enriched populations from rat calvaria cultured in the presence of concanavalin A, have been shown to produce latent collagenase and collagenase inhibitors. The enzymes and inhibitor activities from the ROS 17/2 cells were concentrated by ammonium sulphate precipitation and separated by gel filtration on AcA 54 resin. The size of the latent collagenase (Mr approximately equal to 58000) was reduced on conversion to active enzyme (Mr approximately equal to 48000) by p-aminophenylmercuric acetate. Latent and active forms of gelatinase activity, similar in size to the corresponding forms of collagenase, were also resolved. The collagenase inhibitor activity, which was sensitive to organomercurials, was recovered in two peaks (Mr approximately equal to 68000 and 30000). The active collagenase cleaved interstitial collagens (type I = III greater than II) producing typical 3/4 and 1/4 fragments. This activity was inhibited by the metal ion chelators ethylenediaminetetraacetic acid and o-phenanthroline. Additional specific cleavages of native collagen were also observed which, from the susceptibility of this activity to phenylmethylsulphonyl fluoride, leupeptin and antipain, suggested the presence of a second collagenolytic enzyme. This synthesis of collagenolytic enzymes by these osteoblast-like cells suggests that individual osteoblasts, like fibroblasts, are capable of both synthesizing and degrading their respective organic matrices in vivo.  相似文献   

10.
1. Antisera were raised against the collagenase from rabbit synovial fibroblasts and characterized by immunoprecipitation and immunoinhibition reactions. 2. Immunoglobulins from the antisera were potent inhibitors of the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. 3. The antibody-binding fragment, Fab', produced by digesting the IgG (immunoglobulin G) with pepsin, inhibited collagenase activity just as well as whole IgG. 4. A specific antiserum to the rabbit collagenase was raised by a multi-step procedure. An initial antiserum was made by injecting partially purified collagenase as a complex with sheep alpha2-macroglobulin into a sheep. The non-specific antiserum so obtained was used to produce precipitin lines with the purified enzyme, and these lines were used as antigen for the production of the specific antiserum. 5. An IgG preparation from the specific antiserum was a specific and potent inhibitor of the rabbit synovial fibroblast collagenase. Neutral metallo-proteinase activity secreted by the rabbit fibroblasts was not inhibited by the antibody to the rabbit collagenase. 6. Criteria for determination of the specificity of antisera are discussed.  相似文献   

11.
Bone explants from foetal and newborn rabbits synthesize and release a collagenase inhibitor into culture media. Inhibitor production in the early days of culture is followed first by latent collagenase and subsequently active collagenase in the culture media. A reciprocal relationship exists between the amounts of free inhibitor and latent collagenase in culture media, suggesting strongly that the inhibitor is a component of the latent form of the enzyme. Over 90% of the inhibitory activity of culture media is associated with a fraction of apparent mol.wt. 30000 when determined by gel filtration on Ultrogel AcA 44. The inhibitor blocks the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. It inhibits the action of either active collagenase or latent collagenase activated by 4-aminophenylmercuric acetate. Latent collagenase activated by trypsin is usually much less susceptible to inhibition. The activity of the inhibitor is destroyed by heat, by incubation with either trypsin or chymotrypsin and by 4-aminophenylmercuric acetate. Collagenase activity can be recovered from complexes of enzyme (activated with 4-aminophenylmercuric acetate) with free inhibitor by incubation with either trypsin or 4-aminophenylmercuric acetate, at concentrations similar to those that activate latent collagenase from culture media. The rabbit bone inhibitor does not affect the activity of bacterial collagenase, but blocks the action of collagenases not only from a variety of rabbit tissues but also from other mammalian species.  相似文献   

12.
Radioactive collagen synthesized by human skin fibroblasts in monolayer culture was used as a substrate for collagenase. The high specific activity of this substrate (75,000 cpm/μg) and the use of p-dioxane as a precipitant of the undigested collagen permit this enzyme to be assayed with collagen in solution at 35°C and pH 7.5. The dilutions used are sufficient to prevent the collagen molecules from aggregating, thus precluding the use of inhibitors of gel formation which tend to decrease the activity of the enzyme. Using a 1-h incubation, the procedure is reproducible (SD ± 2.3%) and linear over the range from 10 to 100 ng of bacterial collagenase. Vertebrate collagenase activity is also easily measured with this method.  相似文献   

13.
C Biswas  J M Dayer 《Cell》1979,18(4):1035-1041
In this study, we investigated the possible regulatory role of collagen in collagenase production by cultured human skin fibroblasts and human and rabbit synovial cells. Addition of types I, II or III collagen in solution to the culture media markedly stimulated trypsin-activable collagenase activity in these cultures. In the human cell cultures the stimulatory effect of collagen was further enhanced by a soluble factor isolated from human monocyte culture media (Dayer, Russell and Krane, 1977). Both native and denatured forms of collagen stimulated enzyme production; their relative efficacy varied among the different types. The native form of both types I and II collagen showed a greater effect on collagenase production than the corresponding denatured form, whereas with type III collagen the denatured form was more effective.  相似文献   

14.
1. A specific collagenase from the culture medium of rabbit synovial fibroblasts was purified by gel filtration and ion-exchange chromatography. 2. The enzyme was homogenous on polyacrylamide-gel electrophoresis and showed only traces of contaminants when tested in gels with a non-specific antiserum. 3. The rabbit fibroblast collagenase could hydrolyse collagen both in solution and in fibrillar form. Viscometry showed that at 35 degrees C the purified enzyme could hydrolyse greater than 50 nmol of collagen/min per mg of enzyme. 4. The purified collagenase cleaved collagen in solution at either 24 degrees or 35 degrees C into the characteristic 1/4 and 3/4-length fragments. However, as compared with the impure enzyme, the purified enzyme at 35 degrees C had a much decreased capacity to further degrade the initial specific cleavage products. 5. The specific rabbit collagenase had a mol. wt. of approx. 32000 as estimated by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis, and 35000 by gel filtration.  相似文献   

15.
16.
Latent collagenase activity was detected in the media of a well-characterized line of human breast carcinoma cells maintained for over two years in culture. The media also contained sufficient plasminogen activator to convert extrinsically added plasminogen to plasmin which in turn activated the collagenase. During culture of the breast carcinoma in serum-free medium, collagenase activity was maximum on day 12 whereas plasminogen activator activity changed little with time. Using type I collagen as a substrate, the activated breast tumor collagenase produced 34 ? 14 fragments consistent with a mammalian collagenase. These findings suggest a pathologic role of plasminogen activator in the activation of latent collagenase during tumor invasion.A number of investigators have postulated that proteases may play a role in tumor invasion (1–5). Collagenase is one such protease which is active at neutral pH and specifically cleaves triple helical collagen into two (34 ? 14 fragments (6). Secretion of collagenase by tumor cells migrating from the primary mass provides an attractive hypothesis for the mechanism of tumor invasion of surrounding host connective tissue—since the local environment would likely be at neutral pH. Consequently, a number of investigators have reported significant levels of collagenase activity in a wide variety of tumors (7–14). Abramson (13) has correlated aggressive in vivo growth in carcinomas of the head and neck with collagenase activity, and Kuettner et al. (14) have postulated that inhibitors of collagenase may prevent tumors from invading cartilage.Collagenase is produced in both latent and active forms (6). The latent form can be activated with brief protease treatment (15). Since one of the proteases capable of activating collagenase is plasmin (15), the possibility arose that tumor cells could activate collagenase through plasminogen activator. Plasminogen activator secreted by tumor cells (4, 5) could convert plasminogen zymogen to plasmin which would in turn activate latent tumor collagenase. Testing this hypothesis in vitro was the subject of the present study.Previous studies on collagenase from human carcinoma (7, 13, 14) have suffered from the drawback that contaminating inflammatory cells and fibroblasts may have been the source of the collagenase. Therefore, we have studied collagenase production from cultured human breast carcinoma cells which have been well characterized to be mammary epithelial in origin, malignant in karyotype, and able to grow in nude mice. Production of collagenase from these cells is therefore unequivocally of human carcinoma origin. The time course of latent collagenase and plasminogen activator secretion by these cultured tumor cells was studied following withdrawal of serum. To test whether plasminogen activator was secreted in sufficient amounts to indirectly activate latent collagenase, collagenase activity of the culture media was studied after the extrinsic addition of plasminogen. Finally, to verify that the tumor-secreted collagenase cleaved type I collagen at a single locus, enzyme degradation products were studied by gel electrophoresis.  相似文献   

17.
The gelatinolytic activity of rat uterus collagenase   总被引:6,自引:0,他引:6  
The collagenase produced by rat uterine cells in culture has been examined for its ability to degrade denatured collagen. Acting as a gelatinase, rat uterus collagenase was able to successfully degrade the denatured chains of collagen types I through V. In addition, the enzyme produced multiple cleavages in these chains and displayed values for Km of 4-5 microM, compared to values of 1-2 microM when native collagen was used as substrate. Furthermore, rat uterus collagenase degraded the alpha 2 chain of denatured type I collagen at a significantly faster rate than the alpha 1 chain, as previously observed for human skin fibroblast collagenase. In contrast to the action of human skin collagenase, however, the rat uterus enzyme was found to be a markedly better gelatinase than a collagenase, degrading the alpha chains of denatured type I guinea pig skin collagen at rates some 7-15-fold greater than native collagen. Human skin collagenase degrades the same denatured chains at rates ranging from 13-44% of its rate on native collagen. Rat uterus collagenase, then, is approximately 50 times better a gelatinase than is human skin collagenase. In addition to its ability to cleave denatured collagen chains at greater rates than native collagen, the rat uterus collagenase also attacked a wider spectrum of peptide bonds in gelatin than does human skin collagenase. In addition to cleaving the Gly-Leu and Gly-Ile bonds characteristic of its action on native collagen, rat uterus collagenase readily catalyzed the cleavage of Gly-Phe bonds in gelatin. The rat enzyme was also capable of cleaving Gly-Ala and Gly-Val bonds, although these bonds were somewhat less preferred by the enzyme. The cleavage of peptide bonds other than Gly-Leu and Gly-Ile appears to be a property of the collagenase itself and not a contaminating protease. Thus, it appears that the collagenase responsible for the degradation of collagen during the massive involution of the uterus might also act as a gelatinase to further degrade the initial products of collagenolysis to small peptides suitable for further metabolism.  相似文献   

18.
Cocultures of rabbit fibroblasts and mouse B-16 melanoma cells produce increased levels of collagenase against type I collagen. This stimulatory effect was also found when fibroblasts were cultured in conditioned media from tumor cells. However, the level of the stimulatory factor in conditioned media was influenced by matrix deposited by fibroblasts. Thus, conditioned media collected from monolayers of B-16 plated on fibroblast matrix consistently showed high levels of the factor activity. The influence of the matrix on the level of the factor was not removed by treating the fibroblast matrix with collagenase or chondroitinase ABC and was not reproduced by collagen-coated dishes.  相似文献   

19.
Purification and characterization of a marine bacterial collagenase.   总被引:7,自引:0,他引:7  
J R Merkel  J H Dreisbach 《Biochemistry》1978,17(14):2857-2863
A true collagenase was isolated from the culture fluid of a marine bacterium which has been designated Vibrio B-30 (ATCC 21250). Collagenase production was obtained only in media containing collagen or certain degradation products of collagen. Partial purification on DEAE-cellulose and Sephadex G-200 columns produced active enzyme which was free of nonspecific proteases but which contained two collagenases. The two collagenases have the same apparent molecular size, and evidence is presented to support the theory that one collagenase is derived from the other. Vibrio B-30 collagenase appears to be a tetramer with a molecular weight of about 105 000 composed of two different subunits (mol wt 24 000 and 28 000). Some of the properties of the Vibrio collagenase are compared with those of Clostridium histolyticum collagenase. Molecular weights, subunit structures, specificity and mode of collagen hydrolysis, insensitivity to diisopropyl fluorophosphate and calf serum, and sensitivity to certain metal ion complexing agents and isopropyl alcohol are similar for the collagenases from both organisms. However, Vibrio B-30 collagenase and Clostridium collagenase differ immunologically and electrophoretically.  相似文献   

20.
A specific collagenase from rabbit fibroblasts in monolayer culture   总被引:33,自引:15,他引:18  
1. Explants of rabbit skin and synovium in tissue culture secreted a specific collagenase into their culture media. Primary cultures of fibroblast-like cells, which were obtained from these tissues and maintained in culture for up to 14 subculture passages, also secreted high activities of a specific collagenase into serum-free culture medium. Secretion of enzyme activity from the cell monolayer was at constant rate for over 100h and continued for up to 8 days in serum-free culture medium. The enzymic activity released was proportional to the number of cells in the monolayer. 2. The fibroblast collagenase was maximally active between pH7 and 8. At 24 degrees C the collagenase decreased the viscosity of collagen in solution by 60%. The collagen molecule was cleaved into three-quarters and one-quarter length fragments as demonstrated by electron microscopy of segment-long-spacing crystallites (measured as native collagen molecules aligned with N-termini together along the long axis), and by polyacrylamide-gel electrophoresis of the denatured products. The collagenase hydrolysed insoluble collagen, reconstituted collagen fibrils and gelatin, but had no effect on haemoglobin or Pz-Pro-Leu-Gly-Pro-d-Arg (where Pz=4-phenylazobenzyloxycarbonyl). 3. The fibroblast collagenase was partially purified by gel filtration and the molecular weight was estimated as 38000. The activity of the partially purified enzyme was stimulated by 4-chloromercuribenzoate, inhibited by EDTA, cysteine, 1,10-phenanthroline and serum, but was unaffected by di-isopropyl phosphorofluoridate, Tos-LysCH(2)Cl and pepstatin. 4. Long-term cell cultures originating from rabbit skin or synovium from rabbits with experimentally induced arthritis also secreted specific collagenase. Human fibroblasts released only very small amounts of collagenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号