首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the caudal muscle in the tadpole larva of the compound ascidian Distaplia occidentalis has been investigated with light and electron microscopy. The two muscle bands are composed of about 1500 flattened cells arranged in longitudinal rows between the epidermis and the notochord. The muscle cells are mononucleate and contain numerous mitochondria, a small Golgi apparatus, lysosomes, proteid-yolk inclusions, and large amounts of glycogen. The myofibrils and sarcoplasmic reticulum are confined to the peripheral sarcoplasm. Myofibrils are discrete along most of their length but branch near the tapered ends of the muscle cell, producing a Felderstruktur. The myofibrils originate and terminate at specialized intercellular junctional complexes. These myomuscular junctions are normal to the primary axes of the myofibrils and resemble the intercalated disks of vertebrate cardiac muscle. The myofibrils insert at the myomuscular junction near the level of a Z-line. Thin filaments (presumably actin) extend from the terminal Z-line and make contact with the sarcolemma. These thin filaments frequently appear to be continuous with filaments in the extracellular junctional space, but other evidence suggests that the extracellular filaments are not myofilaments. A T-system is absent, but numerous peripheral couplings between the sarcolemma and cisternae of the sarcoplasmic reticulum (SR) are present on all cell surfaces. Cisternae coupled to the sarcolemma are continuous with transverse components of SR which encircle the myofibrils at each I-band and H-band. The transverse component over the I-band consists of anastomosing tubules applied as a single layer to the surface of the myofibril. The transverse component over the H-band is also composed of anastomosing tubules, but the myofibrils are invested by a double or triple layer. Two or three tubules of sarcoplasmic reticulum interconnect consecutive transverse components. Each muscle band is surrounded by a thin external lamina. The external lamina does not parallel the irregular cell contours nor does it penetrate the extracellular space between cells. In contracted muscle, the sarcolemmata at the epidermal and notochordal boundaries indent to the level of each Z-line, and peripheral couplings are located at the base of the indentations. The external lamina and basal lamina of the epidermis are displaced toward the indentations. The location, function, and neuromuscular junctions of larval ascidian caudal muscle are similar to vertebrate somatic striated muscle. Other attributes, including the mononucleate condition, transverse myomuscular junctions, prolific gap junctions, active Golgi apparatus, and incomplete nervous innervation are characteristic of vertebrate cardiac muscle cells.  相似文献   

2.
The development and maturation of transverse (T) tubules and sarcoplasmic reticulum (SR) have been studied in pre- and postnatal mouse muscle, using selective "staining" of these membrane systems. As previously reported in the literature, orderly transverse orientation of the T tubules occurs late in development and early T-SR junctions (triads and dyads) are located at random along the T tubules in a predominantly longitudinal orientation. We find that initial appearance of transverse tubules occurs fairly abruptly, and that all early T tubules have a longitudinal orientation. Transverse orientation of the T tubule network, location of triads at the A-I junction, and development of differentiated regions of the SR are coordinated events which occur gradually over a period of about 3 weeks for leg muscle.s The timing of triad development coincides with that reported for the increase in slow calcium current and dihydropyridine binding. Differences in T tubule patterns between muscle fibers of EDL and soleus are apparent only at relatively late stages.  相似文献   

3.
With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals.  相似文献   

4.
Summary The larval caudal musculature of the compound ascidian Diplosoma macdonaldi consists of two longitudinal bands of somatic striated muscle. Approximately 800 mononucleate cells, lying in rows between the epidermis and the notochord, constitute each muscle band. Unlike the caudal muscle cells of most other ascidian larvae, the myofibrils and apposed sarcoplasmic reticulum occupy both the cortical and the medullary sarcoplasm.The cross-striated myofibrils converge near the tapered ends of the caudal muscle cell and integrate into a field of myofilaments. The field originates and terminates at intermediate junctions at the transverse cellular boundaries. Close junctions and longitudinal and transverse segments of nonjunctional sarcolemmata flank the intermediate junctions, creating a transverse myomuscular (TMM) complex which superficially resembles the intercalated disk of the vertebrate heart.A perforated sheet of sarcoplasmic reticulum (SR) invests each myofibril. The sheet of SR spans between sarcomeres and is locally undifferentiated in relation to the cross-striations. Two to four saccular cisternae of SR near each sarcomeric Z-line establish interior (dyadic) couplings with an axial analogue of the vertebrate transverse tubular system. The axial tubules are invaginations of the sarcolemma within and adjacent to the intermediate junctions of the TMM complex.The caudal muscle cells of larval ascidians and the somatic striated muscle fibers of lower vertebrates bear similar relationships to the skeletal organs and share similar locomotor functions. At the cellular level, however, the larval ascidian caudal musculature more closely resembles the vertebrate myocardium.This investigation was supported by Developmental Biology Training Grant No. 5-T01-HD00266 from the National Institute of Child Health and Human Development, National Institutes of Health, by National Research Service Award No. 1-F32-GM05259 (M.J.C.) from the National Institute of General Medical Sciences, National Institutes of Health, and by Research Grant No. BMS 7507689 (R.A.C.) from the National Science Foundation. A portion of this study was carried out at the Friday Harbor Laboratories of the University of Washington, and the authors gratefully acknowledge the cooperation and advice extended by the former Director, Dr. Robert L. FernaldResearch facilities were provided in part by Douglas E. Kelly, Professor and Chairman, Department of Anatomy, University of Southern California School of Medicine, Los Angeles, California 90033, USA. The provisions and counsel are warmly acknowledged  相似文献   

5.
Summary The membrane systems of the cardiac muscle cell of the amphipod Tmetonyx cicada (O. Fabricius) are described. The sarcolemma invaginates and forms a transverse network of tubules at the level of the Z band. Narrow longitudinal tubules branch from the network and connect to another transverse network of tubules at the H band level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Adjacent myofibrils are normally separated by a well developed double layer of the sarcoplasmic reticulum. In areas where the myofibrils closely approach the outer sarcolemma, peripheral couplings have been found at the level of the H band.  相似文献   

6.
Summary Developing transverse (T) tubules are found in embryonic guinea pig ventricular myocardium after approximately eight weeks of gestation. By the time of birth (nine weeks total gestation), longitudinally-oriented axial tubules connected to the T tubules also have formed, and the majority of cells closely resemble those of the adult. The form taken by the developing T and axial tubules suggests that they are generated in a manner similar to that for T tubules in chick and rat skeletal muscle, namely by repeated formation of caveolae.Supported by Public Health Service grant HL-11155. Dr. Forbes was a postdoctoral fellow (1-FO2-HL-51147-01) of the PHS during part of this study.  相似文献   

7.
The structure of a small strand of rabbit heart muscle fibers (trabecula carnea), 30–80 µ in diameter, has been examined with light and electron microscopy. By establishing a correlation between the appearance of regions of close fiber contact in light and electron microscopy, the extent and distribution of regions of close apposition of fibers has been evaluated in approximately 200 µ length of a strand. The distribution of possible regions of resistive coupling between fibers has been approximated by a model system of cables. The theoretical linear electrical properties of such a system have been analyzed and the implications of the results of this analysis are discussed. Since this preparation is to be used for correlated studies of the electrical, mechanical, and cytochemical properties of cardiac muscle, a comprehensive study of the morphology of this preparation has been made. The muscle fibers in it are distinguished from those of the rabbit papillary muscle, in that they have no triads and have a kind of mitochondrion not found in papillary muscle. No evidence of a transverse tubular system was found, but junctions of cisternae of the sarcoplasmic reticulum and the sarcolemma, peripheral couplings, were present. The electrophysiological implications of the absence of transverse tubules are discussed. The cisternae of the couplings showed periodic tubular extensions toward the sarcolemma. A regularly spaced array of Z line-like material was observed, suggesting a possible mechanism for sarcomere growth.  相似文献   

8.
The left and right atria of the mouse were compared to each other and to the mouse left ventricle using stereologic techniques. The volume fraction (Vv) and surface area per unit cell volume (Sv) of the interior junctional sarcoplasmic reticulum (IJSR), total JSR and extended JSR were greater in the left atrium than in right. The Vv and Sv of the free SR, transverse tubules, and mitochondria were similar in the two atria. It is suggested that the differences in junctional sarcoplasmic reticulum between the atria can be accounted for by a difference in distribution of two types of cells whose anatomy is analogous to working and conducting fibers in the ventricle. The Sv and Vv of the transverse tubules, mitochondria, and all the components of the sarcoplasmic reticulum except for the free SR were greater in the left ventricle than in either atrium. The greater calcium content and sensitivity to extracellular calcium of the atria may explain the greater volume of free SR in the atria as compared to the left ventricle. The Sv of the plasmalemma of the atria and of the Sv of the plasmalemma of the transverse tubules of the left ventricles supports the suggestion of others that there is a constant ratio of surface area to cell volume in cardiac cells.  相似文献   

9.
Cardiac muscle fibers of the hummingbird and finch have no transverse tubules and are smaller in diameter than those of mammalian hearts. The fibers are connected by intercalated discs which are composed of desmosomes and f. adherentes; small nexuses are often interspersed. As in cardiac muscle of several other animals, the junctional SR of the couplings is highly structured in these two birds but, in addition, and after having lost sarcolemmal contact, the junctional SR continues beyond the coupling to extend deep into the interior of the cells and to form belts around the Z-I regions of the sarcomeres. This portion of the sarcoplasmic reticulum, which we have named "extended junctional SR," and which is so prominent and invariant a feature of cardiac cells of hummingbirds and finches, has not been observed in chicken cardiac cells. The morphological differences between these species of birds may be related to respective differences in heart rates characteristic for these birds.  相似文献   

10.
Peripheral couplings are junctions between the sarcoplasmic reticulum (SR) and the surface membrane (SM). Feet occupy the SR/SM junctional gap and are identified as the SR calcium release channels, or ryanodine receptors (RyRs). In cardiac muscle, the activation of RyRs during excitation-contraction (e-c) coupling is initiated by surface membrane depolarization, followed by the opening of surface membrane calcium channels, the dihydropyridine receptors (DHPRs). We have studied the disposition of DHPRs and RyRs, and the structure of peripheral couplings in chick myocardium, a muscle that has no transverse tubules. Immunolabeling shows colocalization of RyRs and DHPRs in clusters at the fiber's periphery. The positions of DHPR and RyR clusters change coincidentally during development. Freeze-fracture of the surface membrane reveals the presence of domains (junctional domains) occupied by clusters of large particles. Junctional domains in the surface membrane and arrays of feet in the junctional gap have similar sizes and corresponding positions during development, suggesting that both are components of peripheral couplings. As opposed to skeletal muscle, membrane particles in junctional domains of cardiac muscle do not form tetrads. Thus, despite their proximity to the feet, they do not appear to be specifically associated with them. Two observations establish the identify of the structurally identified feet arrays/junctional domain complexes with the immunocytochemically defined RyRs/DHPRs coclusters: the concomitant changes during development and the identification of feet as the cytoplasmic domains of RyRs. We suggest that the large particles in junctional domains of the surface membrane represent DHPRs. These observations have two important functional consequences. First, the apposition of DHPRs and RyRs indicates that most of the inward calcium current flows into the restricted space where feet are located. Secondly, contrary to skeletal muscle, presumptive DHPRs do not show a specific association with the feet, which is consistent with a less direct role of charge movement in cardiac than in skeletal e-c coupling.  相似文献   

11.
The electron microscopic study of the tail of Cercaria chackai reveals that it contains four sets of striated muscle bundles located central to the nonstriated circular and longitudinal muscles. The striated muscle consists of longitudinally oriented lamellar myofibres. Each myofibre contains a single "U" shaped myofibril. The banding pattern is analogous to that of vertebrate striated muscle. The sarcolemma is a simple surface membrane. There are no transverse tubular extensions of sarcolemma. The sarcoplasmic reticulum (SR) is very well developed with cisternae, tubules, and vesicles. SR cisternae form dyadic couplings with the sarcolemma. There is a set of flattened tubules of SR origin traversing the myofibril exactly at the Z region. These tubules are unique to the striated muscle of the cercarian tail and may have functional significance. A diagrammatic reconstruction of the myofibre is presented.  相似文献   

12.
Summary The membrane systems of the cardiac muscle cell of the copepod Euchaeta norvegica Boeck are described. The heart wall, which is between 0.12 and 1.36 m thick, consists of an epicardium and a single layer of muscle cells. Invaginations of the sarcolemma forming transverse tubules have been found at all levels of the sarcomere with the exception of the H-band level. The longitudinal tubules of the same system are closely associated with the sarcoplasmic reticulum to form interior couplings at the A-I level of the sarcomere. Triadic couplings at the Z band level were not seen in E. norvegica, but peripheral couplings were demonstrated. Nexuses were found in the intercalated discs.  相似文献   

13.
The locomotor function of the caudal muscle cells of ascidian larvae is identical with that of lower vertebrate somatic striated (skeletal) muscle fibers, but other features, including the presence of transverse myomuscular junctions, an active Golgi apparatus, a single nucleus, and partial innervation, are characteristic of vertebrate myocardial cells. Seven stages in the development of the compound ascidian Distaplia occidentalis were selected for an ultrastructural study of caudal myogenesis. A timetable of development and differentiation was obtained from cultures of isolated embryos in vitro. The myoblasts of the neurulating embryo are yolky, undifferentiated cells. They are arranged in two bands between the epidermis and the notochord in the caudal rudiment and are actively engaged in mitosis. Myoblasts of the caudate embryo continue to divide and rearrange themselves into longitudinal rows so that each cell simultaneously adjoins the epidermis and the notochord. The formation of secretory granules by the Golgi apparatus coincides with the onset of proteid-yolk degradation and the accumulation of glycogen in the ground cytoplasm. Randomly oriented networks of thick and thin myofilaments appear in the peripheral sarcoplasm of the muscle cells of the comma embryo. Bridges interconnect the thick and thin myofilaments (actomyosin bridges) and the thick myofilaments (H-bridges), but no banding patterns are evident. The sarcoplasmic reticulum (SR), derived from evaginations of the nuclear envelope, forms intimate associations (peripheral couplings) with the sarcolemma. Precursory Z-lines are interposed between the networks of myofilaments in the vesiculate embryo, and the nascent myofibrils become predominantly oriented parallel to the long axis of the muscle cell. Muscle cells of the papillate embryo contain a single row of cortical myofibrils. Myofibrils, already spanning the length of the cell, grow only in diameter by the apposition of myofilaments. The formation of transverse myomuscular junctions begins at this stage, but the differentiating junctions are frequently oriented obliquely rather than orthogonally to the primary axes of the myofibrils. With the appearance of H-bands and M-lines, a single perforated sheet of sarcoplasmic reticulum is found centered on the Z-line and embracing the I-band. The sheet of SR establishes peripheral couplings with the sarcolemma. In the prehatching tadpole, a second collar of SR, centered on the M-line and extending laterally to the boundaries with the A-bands, is formed. A single perforated sheet surrounds the myofibril but is discontinuous at the side of the myofibril most distant from the sarcolemma. To produce the intricate architecture of the fully differentiated collar in the swimming tadpole (J. Morph., 138: 349, 1972). the free ends of the sheet must elevate from the surface of the myofibril, recurve, and extend peripherally toward the sarcolemma to establish peripheral couplings. Morphological changes in the nucleus, nucleolus, mitochondria, and Golgi bodies are described, as well as changes in the ground cytoplasmic content of yolk, glycogen, and ribosomes. The volume of the differentiating cells, calculated from the mean cellular dimensions, and analyses of cellular shape are presented, along with schematic diagrams of cells in each stage of caudal myogenesis. In an attempt to quantify the differences observed ultrastructurally, calculations of the cytoplasmic volume occupied by the mqjor classes of organelles are included. Comparison is made with published accounts on differentiating vertebrate somatic striated and cardiac muscles.  相似文献   

14.
Postnatal development of the sarcolemmal invaginations of right atrial cells of the rat has been studied using standard fixation combined with tannic acid mordanting. T tubules were seen to form at Z lines as simple tubular invaginations starting at the 14th postnatal day. T tubules were present in most cells by the 18th postnatal day but, as in the adult, were restricted to peripheral regions. Also, between the 16th and 18th postnatal day a proliferation of caveolae was seen, both as single vesicles and as complexes with up to a dozen caveolae sharing the same neck. The caveolar complexes persisted in the adult and did not seem to contribute significantly to the formation of the T tubules. Dyadic couplings were seen to become more abundant as T tubules and caveolae proliferated. These findings are discussed in relation to transsarcolemmal Ca2+ movements and excitation-contraction coupling during postnatal development.  相似文献   

15.
16.
Examinations of stages of fibril development in muscle fibers of seven Rhesus monkey and six human fetuses reveal SR tubules encircling the Z lines at all stages of fibril development. The encircling SR tubules are continuous with the SR network of tubules which is found surrounding fibrils at all stages of development observed. The SR tubules encircling the Z lines show connections (electron-opaque strands) with the Z lines. The developing triadic junction shows a progressive increase in complexity of structures within the junction. First, membranes of T and SR become apposed with no visible structure between them- Second, tenuous connections are found traversing the space between apposed membranes. Third, well developed bridges are seen traversing the space. And finally, an intermediate density midway between the apposed membranes and parallel to them is found in favorable sections. Junctions between T tubule membranes were also observed and the structures in these junctions are somewhat similar to those found in junctions between T and SR membranes. The change in orientation of triads from predominantly longitudinal to predominantly transverse is complete in the 18-week monkey fetus and incomplete in the latest stage (28-week) of fetal development observed in humans.  相似文献   

17.
Summary The membrane systems of cardiac muscle cells of the euphausiacean Meganychtiphanes norvegica are described. Transverse tubules are found both at the Z-band level (Tz-tubules) and at the H-band level (Th-tubules). Within the sarcomere narrow longitudinal tubules branch off from the Tz-tubules. At the H-band level these tubules expand forming flattened cisternae in dyadic and triadic couplings with the sarcoplasmic reticulum (SR). Adjacent myofibrils are separated by a well developed SR. Modifications of the SR are seen at the H-band level where junctional cisternae are formed.  相似文献   

18.
Ryanodine receptors (RyRs) are located primarily on the junctional sarcoplasmic reticulum (SR), adjacent to the transverse tubules and on the cell surface near the Z-lines, but some RyRs are on junctional SR adjacent to axial tubules. Neither the size of the axial junctions nor the numbers of RyRs that they contain have been determined. RyRs may also be located on the corbular SR and on the free or network SR. Because determining and quantifying the distribution of RyRs is critical for both understanding and modeling calcium dynamics, we investigated the distribution of RyRs in healthy adult rat ventricular myocytes, using electron microscopy, electron tomography, and immunofluorescence. We found RyRs in only three regions: in couplons on the surface and on transverse tubules, both of which are near the Z-line, and in junctions on most of the axial tubules—axial junctions. The axial junctions averaged 510 nm in length, but they occasionally spanned an entire sarcomere. Numerical analysis showed that they contain as much as 19% of a cell's RyRs. Tomographic analysis confirmed the axial junction's architecture, which is indistinguishable from junctions on transverse tubules or on the surface, and revealed a complexly structured tubule whose lumen was only 26 nm at its narrowest point. RyRs on axial junctions colocalize with Cav1.2, suggesting that they play a role in excitation-contraction coupling.  相似文献   

19.
We have studied the structure of developing normal and dysgenic (mdg/mdg) mouse muscle fibers in vivo, with special attention to the components of the junctions between the sarcoplasmic reticulum and either the surface membrane or the transverse tubules. Triads and dyads are rare in dysgenic muscle fibers, but have apparently normal disposition of feet and calsequestrin. Peripheral couplings in normal developing muscle fibers have junctional tetrads in their surface membrane in association with the junctional feet. Muscle fibers in dysgenic mice lack junctional tetrads. This provides indirect evidence for the identification of the components of junctional tetrads with dihydropyridine receptors, which are known to be absent in dysgenic muscle fibers.  相似文献   

20.
Ca(2+) release from internal stores (sarcoplasmic reticulum or SR) in smooth muscles is initiated either via pharmaco-mechanical coupling due to the action of an agonist and involving IP3 receptors, or via excitation-contraction coupling, mostly involving L-type calcium channels in the plasmalemma (DHPRs), and ryanodine receptors (RyRs), or Ca(2+) release channels of the SR. This work focuses attention on the structural basis for the coupling between DHPRs and RyRs in phasic smooth muscle cells of the guinea-pig urinary bladder. Immunolabeling shows that two proteins of the SR: calsequestrin and the RyR, and one protein the plasmalemma, the L-type channel or DHPR, are colocalized with each other within numerous, peripherally located sites located within the caveolar domains. Electron microscopy images from thin sections and freeze-fracture replicas identify feet in small peripherally located SR vesicles containing calsequestrin and distinctive large particles clustered within small membrane areas. Both feet and particle clusters are located within caveolar domains. Correspondence between the location of feet and particle clusters and of RyR- and DHPR-positive foci allows the conclusion that calsequestrin, RyRs, and L-type Ca(2+) channels are associated with peripheral couplings, or Ca(2+) release units, constituting the key machinery involved in excitation-contraction coupling. Structural analogies between smooth and cardiac muscle excitation-contraction coupling complexes suggest a common basic mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号