首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gorlatov S  Medved L 《Biochemistry》2002,41(12):4107-4116
Interaction of fibrin with endothelial cells stimulates capillary tube formation thus promoting angiogenesis. This interaction occurs via endothelial cell receptor VE-cadherin and fibrin beta chain 15-42 regions [Bach, T. L., et al. (1998) J. Biol. Chem. 272, 30719-30728]. To clarify the mechanism of this interaction, we expressed in Escherichia coli a number of recombinant fibrin(ogen) fragments containing the beta15-42 region or the VE-cad(1-2) and VE-cad(1-4) fragments encompassing two and four extracellular NH2-terminal domains of VE-cadherin, respectively, and tested interaction between them by surface plasmon resonance and ELISA. Neither the recombinant Bbeta1-57 or Bbeta1-64 fragments, nor beta15-57 or beta15-64 prepared from the latter fragments by thrombin treatment to remove fibrinopeptides B, bound the recombinant VE-cadherin fragments. At the same time, a dimeric recombinant thrombin-treated (beta15-66)2 fragment, which had been disulfide-linked via Cys65 to mimic the dimeric arrangement of the beta chains in fibrin, bound VE-cad(1-4) well, but not VE-cad(1-2); no binding was observed with the untreated (Bbeta1-66)2 dimer. We next mutated several residues in the dimer, His16, Arg17, Pro18, and Asp20, and tested the interaction of the thrombin-treated mutants with VE-cad(1-4) by ligand blotting and surface plasmon resonance. No binding was observed with the H16A and R17Q single mutants and the H16P, P18V double mutant while the P18A and D20N single mutants bound VE-cad(1-4) with the same affinity as the thrombin-treated wild-type dimer. These results indicate that the VE-cadherin binding site in fibrin includes NH2-terminal regions of both fibrin beta-chains, that His16 and Arg17 are critical for the binding, and that the third and/or fourth extracellular domains of VE-cadherin are required for the binding to occur.  相似文献   

2.
A Váradi  L Patthy 《Biochemistry》1984,23(9):2108-2112
It was shown previously that two sequentially nonidentical regions of human fibrin(ogen), present in fragments D and E, carry specific plasminogen-binding sites [V aradi , A., & Patthy , L. (1983) Biochemistry 22, 2440-2446]. Comparison of the affinity of a variety of fragment E species for immobilized Lys-plasminogen revealed that fragment E3e [(alpha 20/24-78, beta 54-122, gamma 1-53)2] possesses a strong plasminogen-binding site, whereas fragment E3t [(alpha 20/24-78, beta 54-120, gamma 1-53)2] has 30-fold lower affinity for the affinant . Since the two fragments differ only in the beta ( Leu121 - Lys122 ) segment, this suggests that residues beta ( Leu121 - Lys122 ), present in the triple-helical connector region of fibrin(ogen), are essential for plasminogen binding by fragment E. Reduction and alkylation of fragment E3e lead to the destruction of the plasminogen-binding site, indicating that none of the separated, alkylated polypeptide chains of the fragment are able to bind to plasminogen and probably the coiled-coil superstructure of the connector region is necessary for the maintenance of the plasminogen-binding site of fragment E.  相似文献   

3.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

4.
The carboxyl-terminal regions of the fibrinogen Aalpha chains (alphaC regions) form compact alphaC-domains tethered to the bulk of the molecule with flexible alphaC-connectors. It was hypothesized that in fibrinogen two alphaC-domains interact intramolecularly with each other and with the central E region preferentially through its N-termini of Bbeta chains and that removal of fibrinopeptides A and B upon fibrin assembly results in dissociation of the alphaC regions and their switch to intermolecular interactions. To test this hypothesis, we studied the interactions of the recombinant alphaC region (Aalpha221-610 fragment) and its subfragments, alphaC-connector (Aalpha221-391) and alphaC-domain (Aalpha392-610), between each other and with the recombinant (Bbeta1-66)2 and (beta15-66)2 fragments and NDSK corresponding to the fibrin(ogen) central E region, using laser tweezers-based force spectroscopy. The alphaC-domain, but not the alphaC-connector, bound to NDSK, which contains fibrinopeptides A and B, and less frequently to desA-NDSK and (Bbeta1-66)2 containing only fibrinopeptides B; it was poorly reactive with desAB-NDSK and (beta15-66)2 both lacking fibrinopeptide B. The interactions of the alphaC-domains with each other and with the alphaC-connector were also observed, although they were weaker and heterogeneous in strength. These results provide the first direct evidence for the interaction between the alphaC-domains and the central E region through fibrinopeptide B, in agreement with the hypothesis given above, and indicate that fibrinopeptide A is also involved. They also confirm the hypothesized homomeric interactions between the alphaC-domains and display their interaction with the alphaC-connectors, which may contribute to covalent cross-linking of alpha polymers in fibrin.  相似文献   

5.
Phe-pro-arg-chloromethyl ketone-inhibited alpha-thrombin [FPR alpha-thr] retains its fibrinogen recognition site (exosite 1), augments fibrin/fibrinogen [fibrin(ogen)] polymerization, and increases the incorporation of fibrin into clots. There are two 'low-affinity' thrombin-binding sites in each central E domain of fibrin, plus a non-substrate 'high affinity' gamma' chain thrombin-binding site on heterodimeric 'fibrin(ogen) 2' molecules (gamma(A), gamma'). 'Fibrin(ogen) 1' (gamma(A), gamma(A)) containing only low-affinity thrombin-binding sites, showed concentration-dependent FPR alpha-thr enhancement of polymerization, thus indicating that low-affinity sites are sufficient for enhancing polymerization. FPR gamma-thr, whose exosite 1 is non-functional, did not enhance polymerization of either fibrin(ogen)s 1 or 2 and DNA aptamer HD-1, which binds specifically to exosite 1, blocked FPR alpha-thr enhanced polymerization of both types of fibrin(ogen) (1>2). These results showed that exosite 1 is the critical element in thrombin that mediates enhanced fibrin polymerization. Des B beta 1-42 fibrin(ogen) 1, containing defective 'low-affinity' binding sites, was subdued in its FPR alpha-thr-mediated reactivity, whereas des B beta 1-42 fibrin(ogen) 2 (gamma(A), gamma') was more reactive. Thus, the gamma' chain thrombin-binding site contributes to enhanced FPR alpha-thr mediated polymerization and acts through a site on thrombin that is different from exosite 1, possibly exosite 2. Overall, the results suggest that during fibrin clot formation, catalytically-inactivated FPR alpha-thr molecules form non-covalently linked thrombin dimers, which serve to enhance fibrin polymerization by bridging between fibrin(ogen) molecules, mainly through their low affinity sites.  相似文献   

6.
We assessed the participation of the three known heparin-binding domains of PFn (Hep I, Hep II, Hep III) in their interaction with heparin by making a quantitative comparison of the fluid-phase heparin affinities of PFn and PFn fragments under physiologic pH and ionic strength conditions. Using a fluorescence polarization binding assay that employed a PFn affinity-purified fluorescein-labeled heparin preparation, we found that greater than 98% of the total PFn heparin-binding sites exhibit a Kd in the 118-217 nM range. We also identified a minor (less than 2%) class of binding sites exhibiting very high affinity (Kd approximately 1 nM) in PFn and the carboxyl-terminal 190/170 and 150/136 kDa PFn fragments. This latter activity probably reflects multivalent inter- or intramolecular heparin-binding activity. Amino-terminal PFn fragments containing Hep I (72 and 29 kDa) exhibited low affinity for heparin under physiologic buffer conditions (Kd approximately 30,000 mM). PFn fragments (190/170 and 150/136 kDa) containing both the carboxyl-terminal Hep II and central Hep III domains retained most of the heparin-binding activity of native PFn (Kd = 278-492 nM). The isolated Hep II domain (33-kDa fragment) exhibited appreciable, but somewhat lower (2-5-fold), heparin affinity compared to the 190/170-kDa PFn fragment. Heparin binding to the 100-kDa PFn fragment containing Hep III was barely detectable (Kd greater than 30,000 nM). From these observations, we conclude that PFn contains only one major functional heparin-binding site per subunit, Hep II, that dominates the interaction between heparin and PFn.  相似文献   

7.
Coagulation is fundamental for the confinement of infection and/or the inflammatory response to a limited area. Under pathological inflammatory conditions such as arthritis, multiple sclerosis or sepsis, an uncontrolled activation of the coagulation system contributes to inflammation, microvascular failure and organ dysfunction. Coagulation is initiated by the activation of thrombin, which, in turn, triggers fibrin formation by the release of fibrinopeptides. Fibrin is cleaved by plasmin, resulting in clot lysis and an accompanied generation of fibrin fragments such as D and E fragments. Various coagulation factors, including fibrinogen and/or fibrin [fibrin(ogen)] and also fibrin degradation products, modulate the inflammatory response by affecting leukocyte migration and cytokine production. Fibrin fragments are mostly proinflammatory, however, Bβ15-42 in particular possesses potential antiinflammatory effects. Bβ15-42 inhibits Rho-kinase activation by dissociating Fyn from Rho and, hence prevents stress-induced loss of endothelial barrier function and also leukocyte migration. This article summarizes the state-of-the-art in inflammatory modulation by fibrin(ogen) and fibrin fragments. However, further research is required to gain better understanding of the entire role fibrin fragments play during inflammation and, possibly, disease development.  相似文献   

8.
The structure of fibrin plays an important role in the organization of thrombi, the development of atherosclerosis, and restenosis after PTCA. In this study, we examined the mechanisms of the migration of vascular smooth muscle cells (SMCs) into fibrin gels, using an in vitro assay system. Cultured SMCs from bovine fetal aortic media migrated into fibrin gels prepared with thrombin, which cleaves both fibrinopeptides A and B from fibrinogen, without other chemotactic stimuli. Both desA fibrin gels prepared with batroxobin, which cleaves only fibrinopeptide A, and desB fibrin gels prepared with Agkistrodon contortrix thrombin-like enzyme (ACTE), which cleaves only fibrinopeptide B, similarly induced the migration of SMCs compared to fibrin gels prepared with thrombin. These results suggest that the cleavage of fibrinopeptides is not necessary, but rather that the three-dimensional structure of the gel may be important for the migration of SMCs. Furthermore, gels prepared with protamine sulfate, which forms fibrin-like gels non-enzymatically, similarly induced the migration of SMCs compared to the gels prepared with thrombin. Both anti-fibrin(ogen) fragment D and anti-fibrin(ogen) E antibodies inhibited the migration of SMCs into fibrin gels, suggesting that both the D and E domains of fibrin(ogen) are involved in the migration of SMCs into fibrin gels. The addition of GRGDS, a synthetic RGD-containing peptide, but not that of GRGES, a control peptide, partially inhibited the migration of SMCs into fibrin gels, suggesting that the migration of SMCs into fibrin gels is at least in part dependent on the RGD-containing region of the alpha chain. The migration of SMCs into fibrin gels was also inhibited by a monoclonal antibody for integrin alpha v beta 3 and alpha 5 beta 1, indicating that migration is dependent on these integrins. Furthermore, both fibrin(ogen) fragments D and E inhibited the migration of SMCs into fibrin gels, suggesting that these fragments, generated during fibrino(geno)lysis, may be relevant in the regulation of SMC migration into fibrin gels.  相似文献   

9.
Structure of fragment E species from human cross-linked fibrin   总被引:6,自引:0,他引:6  
Fragments E1, E2, and E3 are plasmic derivatives of fibrin encompassing the NH2-terminal region of the molecule. The first two species, but not the third, can bind to fragment DD, forming a (DD)E complex, and therefore probably contain binding sites involved in the polymerization of fibrin. For localization of these sites the structure of the fragments was determined by establishing the NH2- and COOH-terminal boundaries of the molecules and using the published amino acid sequence of fibrinogen. Fragment E1 encompasses Gly-alpha 17 to Lys-alpha 78, Gly-beta 15 to Lys-beta 122, and Tyr-gamma 1 to Lys-gamma 62, this representing the intact NH2-terminal region of fibrin. Fragment E2 is an asymmetric molecule which is lacking the sequence of Gly-beta 15 to Lys-beta 53 in one beta-chain remnant. This fragment E2 also lost Lys-beta 122 from the COOH terminal of the beta chain as compared with fragment E1. These cleavages did not affect the ability of fragment E2 to bind to fragment DD. Fragment E3 was heterogeneous, the main species encompassing Val-alpha 20 to Lys-alpha 78, Lys-beta 54 to Leu-beta 120, and Tyr-gamma 1 to Lys-gamma 53. Thus, the loss of the binding function involved in the formation of fibrin clot was associated with the removal of small fragments from all three polypeptide chains: alpha 17-19 (Gly-Pro-Arg), beta 15-53 from the remaining half of the molecule, beta 121 (Leu), and gamma 54-58 (Thr-Ser-Glu-Val-Lys).  相似文献   

10.
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.  相似文献   

11.
The interaction of fibronectin with fibrin and its incorporation into fibrin clots are thought to be important for the formation of a provisional matrix that promotes cell adhesion and migration during wound healing. However, it is still unclear whether fibronectin interacts with both fibrin and fibrinogen or fibrin only and whether fibronectin binds exclusively to the fibrin(ogen) alphaC domains. To address these questions, we studied the interaction of fibronectin with fibrinogen, fibrin, and their proteolytic and recombinant fragments. In both ELISA and surface plasmon resonance (SPR) experiments, immobilized fibrinogen did not bind fibronectin at all, but after conversion to fibrin, it bound fibronectin with high affinity. To test which regions of fibrin are involved in this binding, we studied the interaction of fibronectin with the fibrin-derived D-D:E(1) complex and a recombinant alphaC fragment (residues Aalpha221-610) corresponding to the alphaC domain that together encompass the whole fibrin(ogen) molecule. In ELISA, when fibronectin was added to the immobilized D-D:E(1) complex or the immobilized alphaC fragment, only the latter exhibited binding. Likewise, when fibronectin was immobilized and the complex or the alphaC fragment was added, only the latter was observed to bind. The selective interaction between fibronectin and the alphaC fragment was confirmed by SPR. The fibronectin-binding site was further localized to the NH(2) terminal connector region of the alphaC domain since in ELISA, the immobilized recombinant Aalpha221-391 sub-fragment bound fibronectin well while the immobilized recombinant Aalpha392-610 sub-fragment exhibited no binding. This finding was confirmed by ligand blotting analysis. Thus, the results provide direct evidence for the existence of a cryptic high-affinity fibronectin-binding site in the Aalpha221-391 region of the fibrinogen alphaC domain that is not accessible in fibrinogen but becomes exposed in fibrin.  相似文献   

12.
Fibrinogen, fibrin, and related fragments have varying stimulatory effects on the initial rate of the activation of human plasminogen ([Glu1]Pg) by recombinant tissue plasminogen activator (rt-PA). A detailed analysis of this enhancement was undertaken using various purified and complexed forms of the known domains of fibrin(ogen) with a view to gaining additional knowledge regarding the substructures of fibrinogen and fibrin that are important for their stimulatory capacities. Both arvin-mediated fibrin, as well as fibrinogen fragments generated as a result of its cleavage with CNBr, stimulate the activation in a biphasic manner, most likely as a result of changes in the promoter molecule accompanying the denaturation processes that are normally employed to either solubilize or generate these particular promoters. Using purified fibrinogen and fibrin fragments, it was found that fragment E, which binds to [Glu1]Pg, does not enhance the activation reaction, while fragment D1 has a potentiating effect. This suggests that the binding of [Glu1]Pg to fibrin(ogen) alone is not, in itself, sufficient for stimulation of activation to occur, but that the rt-PA-fibrin(ogen) interaction is fundamental to this same process. All purified and mixtures of fragments containing the fragment D domain (e.g., D2E, X-oligomer, fragment X) stimulate the reaction to a greater degree than fibrinogen and fragment D1. It is concluded that the fibrinogen D domain is asine qua non for the enhancement reaction, while structures containing the E domain had a symbiotic effect on enhancement.On study leave from the National Institute for Biological Standards and Control, South Mimms, HERTS EN6 3QG, England.  相似文献   

13.
Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell-binding fragment contains a cryptic site for monocyte chemotaxis which is expressed upon enzymatic cleavage of fibronectin.  相似文献   

14.
Ligand-blotting and dot-blotting procedures were used to investigate the binding of [125I]-heparin to apolipoprotein E, its thrombin fragments E22 (residues 1-191) and E12 (residues 192-299), and to nine apolipoprotein E synthetic fragments. E22 and E12 bound [125I] heparin indicating multiple heparin-binding domains. Synthetic peptides of apoE corresponding to residues 129-169, 139-169, and 144-169, but not 148-169, bound [125I] heparin suggesting that residues 144-147 (Leu-Arg-Lys-Arg) in E22 are important for binding. Peptide 202-243 and 211-243 but not 219-243 bound [125I] heparin suggesting that residues 211-218 (Gly-Glu-Arg-Leu-Arg-Ala-Arg-Met) comprise a portion of the E12 heparin-binding domain.  相似文献   

15.
The fibrinogen gamma-module sequences, gamma190-202 or P1, and gamma377-395 or P2, were implicated in interaction with the alpha(M)I-domain of the leukocyte receptor alpha(M)beta(2). P1 is an integral part of the gamma-module central domain, while P2 is inserted into this domain forming an antiparallel beta-strand with P1. We hypothesized earlier that separation of P2 from P1 may regulate interaction of fibrin(ogen) with leukocytes during the inflammatory response. To test the relative contributions of these sequences to the interaction and the effect of their separation, we prepared the recombinant gamma-module (gamma148-411) and its halves, gamma148-286 and gamma287-411 fragments containing P1 and P2, respectively, and evaluated their affinities for the recombinant alpha(M)I-domain. In a solid-phase binding assay, the immobilized gamma-module exhibited high affinity for alpha(M)I (K(d) = 22 nM), while the affinities of the isolated gamma148-286 and gamma287-411 halves were much lower (K(d)'s = 521 and 194 nM, respectively), indicating that both halves contribute to the interaction in a synergistic manner. This is consistent with the above hypothesis. Further, we prepared the recombinant gamma148-191 and gamma192-286 fragments corresponding to the NH(2)-terminal and central domains, respectively, as well as gamma148-226 containing P1, and tested their interaction with alpha(M)I. The immobilized gamma192-286 fragment bound to alpha(M)I with K(d) = 559 nM, while both gamma148-191 and gamma148-226 failed to bind suggesting that P1 does not contribute substantially to the binding and that the binding occurs mainly through the gamma227-286 region. To further localize a putative binding sequence, we cleaved gamma192-286 and analyzed the resulting peptides. The only alpha(M)I-binding activity was associated with the gamma228-253 peptide, indicating that this region of the central domain contains a novel alpha(M)beta(2)-binding sequence.  相似文献   

16.
K O Badellino  P N Walsh 《Biochemistry》2001,40(25):7569-7580
Inhibition of factor XIa by protease nexin II (K(i) approximately 450 pM) is potentiated by heparin (K(I) approximately 30 pM). The inhibition of the isolated catalytic domain of factor XIa demonstrates a similar potentiation by heparin (K(i) decreasing from 436 +/- 62 to 88 +/- 10 pM) and also binds to heparin on surface plasmon resonance (K(d) 11.2 +/- 3.2 nM vs K(d) 8.63 +/- 1.06 nM for factor XIa). The factor XIa catalytic domain contains a cysteine-constrained alpha-helix-containing loop: (527)CQKRYRGHKITHKMIC(542), identified as a heparin-binding region in other coagulation proteins. Heparin-binding studies of coagulation proteases allowed a grouping of these proteins into three categories: group A (binding within a cysteine-constrained loop or a C-terminal heparin-binding region), factors XIa, IXa, Xa, and thrombin; group B (binding by a different mechanism), factor XIIa and activated protein C; and group C (no binding), factor VIIa and kallikrein. Synthesized peptides representative of the factor XIa catalytic domain loop were used as competitors in factor XIa binding and inhibition studies. A native sequence peptide binds to heparin with a K(d) = 86 +/- 15 nM and competes with factor XIa in binding to heparin, K(i) = 241 +/- 37 nM. A peptide with alanine substitutions at (534)H, (535)K, (538)H, and (539)K binds and competes with factor XIa for heparin-binding in a manner nearly identical to that of the native peptide, whereas a scrambled peptide is approximately 10-fold less effective, and alanine substitutions at residues (529)K, (530)R, and (532)R result in loss of virtually all activity. We conclude that residues (529)K, (530)R, and (532)R comprise a high-affinity heparin-binding site in the factor XIa catalytic domain.  相似文献   

17.
Apolipoprotein E7 (apoE7) (apoE3 E244K/E245K) is a naturally occurring mutant in humans that is associated with increased plasma lipid levels and accelerated atherosclerosis. It is reported to display defective binding to low density lipoprotein (LDL) receptors, high affinity binding for heparin, and like apoE4, preferential association with very low density lipoproteins (VLDL). There are two potential explanations for the preference of apoE7 for VLDL: lysine mutations, which occur in the major lipid-binding region (residues 244-272) of the carboxy-terminal domain of apoE7, could either directly determine the lipoprotein-binding preference or could interact with negatively charged residues in the amino-terminal domain, resulting in a domain interaction similar to that in apoE4 (interaction of Arg-61 with Glu-255), which is responsible for the apoE4 VLDL preference. To distinguish between these possibilities, we determined the binding preferences of recombinant apoE7 and two amino-terminal domain mutants, apoE7 (E49Q/E50Q) and apoE7 (D65N/E66Q), to VLDL-like emulsion particles. ApoE7 and both mutants displayed a higher preference for the emulsion particles than did apoE3, indicating that the carboxy-terminal lysine mutations in apoE7 are directly responsible for its preference for VLDL. Supporting this conclusion, the carboxy-terminal domain 12-kDa fragment of apoE7 (residues 192;-299) displayed a higher preference for VLDL emulsions than did the wild-type fragment. In addition, lipid-free apoE7 had a higher affinity for heparin than did apoE. However, when apoE7 was complexed with dimyristoylphosphatidylcholine or VLDL emulsions, the affinity difference was eliminated. In contrast to previous studies, we found that apoE7 does not bind defectively to the LDL receptor, as determined in both cell culture and solid-phase assays.We conclude that the two additional lysine residues in the carboxy-terminal domain of apoE7 directly alter its lipid- and heparin-binding affinities. These characteristics of apoE7 could contribute to its association with increased plasma lipid levels and atherosclerosis.  相似文献   

18.
Proteoglycan-binding peptides were designed based on consensus sequences in heparin-binding proteins: XBBXBX and XBBBXXBX, where X and B are hydropathic and basic residues, respectively. Initial peptide constructs included (AKKARA)(n) and (ARKKAAKA)(n) (n = 1-6). Affinity coelectrophoresis revealed that low M(r) peptides (600-1,300) had no affinities for low M(r) heparin, but higher M(r) peptides (2,000-3,500) exhibited significant affinities (K(d) congruent with 50-150 nM), which increased with peptide M(r). Affinity was strongest when sequence arrays were contiguous and alanines and arginines occupied hydropathic and basic positions, but inclusion of prolines was disruptive. A peptide including a single consensus sequence of the serglycin proteoglycan core protein bound heparin strongly (K(d) congruent with 200 nM), likely owing to dimerization through cysteine-cysteine linkages. Circular dichroism showed that high affinity heparin-binding peptides converted from a charged coil to an alpha-helix upon heparin addition, whereas weak heparin-binding peptides did not. Higher M(r) peptides exhibited high affinities for total endothelial cell proteoglycans (K(d) congruent with 300 nM), and approximately 4-fold weaker affinities for their free glycosaminoglycan chains. Thus, peptides including concatamers of heparin-binding consensus sequences may exhibit strong affinities for heparin and proteoglycans. Such peptides may be applicable in promoting cell-substratum adhesion or in the design of drugs targeted to proteoglycan-containing cell surfaces and extracellular matrices.  相似文献   

19.
In addition to its well-characterized role in hemostasis, fibrin(ogen) has been proposed to be a central regulator of the inflammatory response. Multiple in vitro studies have demonstrated that this hemostatic factor can alter leukocyte function, including cell adhesion, migration, cytokine and chemokine expression, degranulation, and other specialized processes. One important link between fibrin(ogen) and leukocyte biology appears to be the integrin receptor alpha(M)beta(2)/Mac-1, which binds to immobilized fibrin(ogen) and regulates leukocyte activities. Although it is well established that fibrin(ogen) is a ligand for alpha(M)beta(2), the precise molecular determinants that govern this interaction are only now becoming clear. A novel line of mice expressing a mutant form of fibrinogen (Fib gamma(390-396A)) has revealed that gamma chain residues 390-396 are important for the high-affinity engagement of fibrinogen by alpha(M)beta(2) and leukocyte function in vivo. Fibrinogen gamma(390-396A) failed to support alpha(M)beta(2)-mediated adhesion of primary neutrophils, monocytes, and macrophages, and mice expressing this fibrinogen variant were found to exhibit a major defect in the host inflammatory response following acute challenges. Most notably, Fib gamma(390-396A) mice display a profound impediment in Staphylococcus aureus elimination by leukocytes following intraperitoneal inoculation. These findings have positively established the physiological importance of fibrin(ogen) as a ligand for alpha(M)beta(2) and illustrate that the fibrin(ogen) gamma chain residues 390-396 constitute a critical feature of the alpha(M)beta(2) binding motif. Finally, the Fib gamma(390-396A) mice represent a valuable system for better defining the contribution of fibrin(ogen) to the inflammatory response in the absence of any confounding alteration in clotting function.  相似文献   

20.
The formation of a fibrin clot occurs through binding of putative complementary sites, called fibrin polymerization sites, located in the NH2- and COOH-terminal domains of fibrin monomer molecules. In this study, we have investigated the structure of the NH2-terminal fibrin polymerization site by using fibrinogen-derived peptides and fragments. Fibrinogen was digested with Crotalus atrox protease III, to two major molecular species: a Mr 325,000 derivative (Fg325) and a peptide of Mr 5000. The peptide and its thrombin-cleavage product were purified by ion-exchange and reverse-phase HPLC; the authenticity of the B beta 1-42 and beta 15-42 peptides, respectively, was confirmed by amino acid sequencing. Since Fg325 had decreased thrombin coagulability, we addressed the question of whether the peptide B beta 1-42 contained a fibrin polymerization site. In order to identify and map the site, the peptides B beta 1-42 and beta 15-42 were tested for their ability to inhibit fibrin monomer polymerization. In addition the following peptides prepared by chemical synthesis were also tested: beta 15-18, beta 15-26, beta 24-42, beta 40-54, beta 50-55, and alpha 17-19-Pro. While B beta 1-42 had no inhibitory activity, the peptide devoid of fibrinopeptide B, beta 15-42, was a strong inhibitor. The peptides beta 15-18, beta 15-26, and beta 15-42 decreased the rate of fibrin polymerization by 50% at a molar excess of the peptide to fibrin monomer of 500, 430, and 50, respectively. The peptides beta 24-42, beta 40-54, and beta 50-55 were inactive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号