首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To verify the hypothesis that cell redox status regulates the process of microspore embryogenesis (ME), reactive oxygen species (ROS) generation and the activity of enzymatic and non-enzymatic antioxidants were analyzed in eight doubled haploid lines of triticale with significant differences in embryogenic potential. The analyses were performed in anthers excised from freshly cut tillers (control) and from low temperature (LT) pre-treated tillers (3 weeks at 4 °C) in which ME has been initiated. Significant associations between ME effectiveness and the variables studied were found. In control cultures, high superoxide dismutase (SOD) activity appeared crucial for microspore viability. On the other hand, positive though non-linear correlation between ME effectiveness and H2O2 generation, and negative correlation with catalase (CAT) activity suggest that some threshold level of H2O2 is important for successful ME initiation. LT tillers pre-treatment significantly increased H2O2 accumulation, which had a negative effect on ME effectiveness. However, even high level of H2O2 did not endanger cell viability as long as the cells exhibited high activity of ROS-decomposing enzymes (SOD, CAT and POX). The ability to sustain antioxidative enzyme activity under cold stress in the dark was another important requirement for high effectiveness of ME, allowing for the generation of the signal initiating microspore reprogramming and simultaneously protecting the cells from the toxic effects of ROS production. The role of antioxidative enzymes cannot be replaced even by high activity of non-enzymatic antioxidants. In conclusion, genetically controlled but environmentally modified cell tolerance to oxidative stress seems to play an important role in triticale ME.  相似文献   

3.
Doubled haploid (DH) production is a key technology in plant breeding and research. One emerging method of choice for DH production is microspore culture, which requires reprogramming of the microspores from their normal gametophytic development to a sporophytic development resulting in embryo formation. This commonly requires the application of stress such as cold, heat, or starvation. Here, we report the effect of different stress treatments on embryo formation and the proportion of green plants in triticale microspore culture. We observed different responses to the applied stress treatments among three studied genotypes. In general, a 3-wk cold stress treatment performed best with regard to the two criteria. For one genotype, the application of a 24- or 48-h heat stress gave similar or slightly better results and consequently may be an alternative for genotypes that are recalcitrant to the cold stress treatment.  相似文献   

4.
Quantitative trait loci (QTLs) associated with androgenic responsiveness in triticale were analyzed using a population of 90 DH lines derived from the F1 cross between inbred line ‘Saka 3006’ and cv. ‘Modus’, which was used in a number of earlier studies on molecular mapping in this crop. Using Windows QTL Cartographer and MapQTL 5.0, composite interval mapping (CIM) and association studies (Kruskal–Wallis test; K–W) for five androgenesis parameters (androgenic embryo induction, total regeneration and green plant regeneration ability, and two characteristics describing final androgenesis efficiency) were conducted. For the studied components of androgenic response, CIM detected in total 28 QTLs which were localized on 5 chromosomes from A and R genomes. Effects of all QTLs that were identified at 2.0 or above of the LOD score explained 5.1–21.7?% of the phenotypic variation. Androgenesis induction was associated with seven QTLs (LOD between 2.0 and 5.8) detected on chromosomes 5A, 4R, 5R and 7R, all of them confirmed by K–W test as regions containing the markers significantly linked to the studied trait. What is more, K–W test revealed additional markers on chromosomes: 5A, 2BL, 7B and 5R. Both total and green regeneration ability were controlled by genes localized on chromosome 4A. Some of the QTLs that affected final androgenesis efficiency were identical with those associated with androgenic embryo induction efficiency, suggesting that the observed correlation may be either due to tight linkage or to pleiotropy. Key message Five regions of the triticale genome were indicated as revealing significant marker/trait association. Markers located in these regions are potentially useful for triticale breeding through marker-assisted selection.  相似文献   

5.
6.

Induction of androgenesis, followed by chromosome doubling, is a crucial method to obtain complete homozygosity in one-generation route. However, in vitro androgenesis can result in various genetic and epigenetic changes in derived triticale plants. In this study, we evaluated chromosome alternations and we associated them with the changes of spike morphology in androgenic progeny of triticale. We karyotyped offspring plants that derived from double haploid plants using fluorescence in situ hybridization techniques. We distinguished four major groups of karyotypes: double ditelosomics, nullisomics N2R, nullisomics N5R, and triticale plants with a complete set of chromosomes. It is known that more than half of QTLs connected with androgenic response are located in R-genome of triticale but 2R, 5R, and 6R chromosomes are not included. We hypothesized that the reason why only aberrations of chromosomes 2R and 5R appear during androgenesis of triticale is that because these chromosomes are not involved in the stimulation of androgenic response and the following regeneration of plants is not disrupted. Concerning the established groups, we evaluated following quantitative traits: spike length, number of spikes per plant, number of spikelets per spike, and number of grains per spike. The nullisomy of chromosome 2R and 5R resulted in vast changes in spike architecture of triticale plants, which can be correlated with the location of major QTLs for spike morphology traits on these chromosomes. The spikes of nullisomic plants had significantly decreased spike length which correlated with the reduction of number of spikelets per spike and number of grains per spike.

  相似文献   

7.
Spacing between individuals in populations of Harmothoë imbricata has been investigated both on the shore and in the laboratory. Males tend to occur closer together than females, and the mean male‐male individual distance measured was less than the mean distance between females; male—female distances for immature worms were intermediate. When worms mature they pair: the male mounts the female and lies across her dorsal surface. There is evidence that after spawning the members of a pair separate. Contact responses between worms have been investigated in the laboratory. Most encounters between immature worms lead to separation, as a result of one or both worms moving rapidly away from the other or fighting; females show more marked avoidance behaviour than males. The majority of male‐male and female‐female encounters between mature worms also lead to separation but in male‐female encounters the male usually mounts the female. A male which has mounted a female becomes highly aggressive and will attack intruding males but not females.  相似文献   

8.

Key message

QTL mapping in multiple families identifies trait-specific and pleiotropic QTL for biomass yield and plant height in triticale.

Abstract

Triticale shows a broad genetic variation for biomass yield which is of interest for a range of purposes, including bioenergy. Plant height is a major contributor to biomass yield and in this study, we investigated the genetic architecture underlying biomass yield and plant height by multiple-line cross QTL mapping. We employed 647 doubled haploid lines from four mapping populations that have been evaluated in four environments and genotyped with 1710 DArT markers. Twelve QTL were identified for plant height and nine for biomass yield which cross-validated explained 59.6 and 38.2 % of the genotypic variance, respectively. A major QTL for both traits was identified on chromosome 5R which likely corresponds to the dominant dwarfing gene Ddw1. In addition, we detected epistatic QTL for plant height and biomass yield which, however, contributed only little to the genetic architecture of the traits. In conclusion, our results demonstrate the potential of genomic approaches for a knowledge-based improvement of biomass yield in triticale.  相似文献   

9.

Key message

The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage.

Abstract

Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the genetic potential of triticale concerning lodging resistance and yield. However, they might have pleiotropic effects on other, agronomically important traits including Fusarium head blight. Therefore, we analyzed a population of 199 doubled haploid (DH) lines of the cross HeTi117-06 × Pigmej for plant height, heading stage, and FHB severity across 2 locations and 2 years. The most prominent QTL was detected on chromosome 5R explaining 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. The frequency of recovery in cross validation was ≥90 % for all three traits. Because the markers that detect dwarfing gene Ddw1 in rye are also in our population the most closely linked markers, we assume that this major QTL resembles Ddw1. For FHB severity two, for plant height three, and for heading stage five additional QTL were detected. Caused by the considerable genetic variation for heading stage and FHB severity within the progeny with the dwarfing allele, short-strawed, early heading and FHB-resistant lines can be developed when population size is large enough.  相似文献   

10.
11.
12.
13.
14.
Much progress has been made in understanding the mechanism of bladder cancer (BC) progression. Protein kinase C-α (PKCα) is overexpressed in many kinds of cancers. Additionally, PKCα is considered an oncogene that regulates proliferation, invasion, migration, apoptosis and cell cycle in multiple cancers. However, the mechanism underlying how these cellular processes are regulated by PKCα remains unknown. In the present study, we used PKCα siRNA to knock down PKCα gene expression and found that down-regulation of PKCα could significantly inhibit cell proliferation, migration and invasion and induce apoptosis and G1/S cell cycle arrest in vitro. Overexpression of PKCα promotes tumour growth in vivo. We applied cDNA microarray technology to detect the differential gene expression in J82 cells with PKCα knockdown and found that five key genes (BIRC2, BIRC3, CDK4, TRAF1 and BMP4) were involved in proliferation and apoptosis according to GO analysis and pathway analyses. Correlation analysis revealed a moderate positive correlation between PKCα expression and the expression of five downstream genes. BIRC2 and BIRC3 inhibit apoptosis, whereas CDK4, TRAF1 and BMP4 promote proliferation. Essentially, all five of these target genes participated in proliferation, and apoptosis was regulated by PKCα via the NF-kB signalling pathway.  相似文献   

15.
Variations in sex steroids bioavailability were linked to the gender difference in the growth of thyroid glands of neonatal rats. In the present study we tested androgen receptor (AR) and estrogen receptor (ER) concentrations by ligand binding assay, and expression of their genes by RT-PCR and Western blot in the thyroid glands of neonatal rats. AR concentration remained elevated from postnatal day (PND) 10 onwards in males, whereas it decreased by PND 20 in females. AR mRNA and protein expressions were higher in males than females, which increased by PND 10, decreased after PND 15 and reached the nadir by PND 20. ER concentration increased by PND 10 and decreased thereafter in both sex. ERα mRNA expression diminished by PND 15 in both sex; while ERβ mRNA decreased by PND 15 to reach the nadir by PND 20 in males, it was augmented by PND 10 in females to reach the peak by PND 15 and diminished by PND 20. ERα protein expression increased by PND 10 and remained elevated till PND 20 in both sex. ERβ protein expression in males increased by PND 10 and decreased by PND 20, while it remained static up to PND 15 and decreased in females. Testosterone stimulated [3H]-thymidine uptake and the expression of IGF-1 and NIS genes in thyrocytes of both sex in vitro, while estradiol stimulated them in females but not in males. We conclude that androgens influence the growth and differentiation of thyrocytes through augmented expression of AR, IGF-1 and NIS in either sex, whereas estrogen imparts the gender difference, which may be at a level beyond the expression of ERs.  相似文献   

16.
Secondary embryogenesis from rapeseed microspore-derived embryos (MDEs) was studied in three Brassica napus L. cultivars Global, PF704 and Option. The best results in terms of secondary embryogenesis percentage obtained in cultures of Global and PF704 MDEs (75.88 and 65.97 %, respectively) and PF704 produced the highest number of secondary embryos per each primary embryo (14.91 ± 2.18). After optimization of physical parameters, rapeseed hypocotyls of MDEs were bombarded with microcarriers coated with a plasmid containing GUS reporter gene. The highest levels of transient GUS expression were obtained using bombardment with gold particles of 1.6 μm, at helium pressure of 9.3 MPa, a bombardment distance of 9 cm, chamber vacuum pressure of 7.1 × 10−6 kPa and single bombardment in bombardment medium containing 0.4 M mannitol.  相似文献   

17.
The mode of inheritance of chloroplast and mitochondrial DNA (mtDNA) in rye × triticale intergeneric hybrids has been studied with the use of specific PCR markers for loci 18S/5S and 3rbcL in organelle DNA. In rye × triticale BC1, mtDNA copies of two types, paternal and maternal, have been found; in BC2 plants, only paternal mtDNA and chloroplast DNA (cpDNA) have been detected. Mechanisms determining the inheritance and/or differential amplification of organelles of a specific type are discussed.  相似文献   

18.
The use of doubled haploids improves the efficiency of cultivar development in many crops and can be helpful in genetic and molecular studies. The major problem with this approach is the low efficiency of green plant regeneration. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of hexaploid triticale (× Triticosecale Wittmack) cv. Bogo. The absence of growth regulators in the induction medium was the most effective condition for the formation of embryo-like structures. The highest induction rates were observed at microspore densities of 1.5×105 microspores and 2×105 microspores per milliliter. Such cultures produced an average of 54.9 green plants per single donor spike. The frequency of albino plants ranged from 9.3% to 22.9%. Among the green progeny tested, 30.8% were spontaneously doubled haploids.Abbreviations BAP Benzylaminopurine - DAPI 4-6 Diamidino-2-phenylindole - 2,4-D 2,4-Dichlorophenoxyacetic acid - NAA -Naphthaleneacetic acid  相似文献   

19.
Herzog K  Flachowsky H  Deising HB  Hanke MV 《Gene》2012,498(1):41-49
Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene.  相似文献   

20.
Diabetes mellitus is a major leading cause of end-stage renal failure, characterized by kidney inflammation and glomerular dysfunction, in worldwide. Kidney inflammation is associated to modifications in the expression levels of pro-inflammatory molecules, such as nuclear factor-κB (NFκB) and adhesion molecules, such as E-cadherin, leading to glomerular dysfunction. However, the relationships between these two processes in human diabetic nephropathy remain an open question. Since Psammomys obesus is an ideal animal model to study diabetes mellitus temporal evolution, we have used this model to study the correlation between kidney structural changes and modification on the expression levels of NFκB and E-cadherin over time. We have demonstrated that, after induction of diabetes metillus with a high energy diet (HED), P. obesus develops the characteristic symptoms of human disease. In detail, at the third month nuclear factor NFκB is expressed in the kidney of diabetic P. obesus and structural renal changes, such as mesangial expansion or interstitial fibrosis, are detectable; at 6 months, thickening of glomerular basement membrane, glomerular sclerosis, and tubular atrophy occurs; at 9 months, symptoms of the final stages of the disease, such as down expression of E-cadherin, happens. As a result of these observations we proposed that NFκB activation and E-cadherin down-expression are interlinked on diabetic kidney disease (DKD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号