首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying ecological memory in plant and ecosystem processes   总被引:2,自引:0,他引:2       下载免费PDF全文
The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.  相似文献   

2.
Plants have the capacity to alter their phenotype in response to environmental factors, such as herbivory, a phenomenon called phenotypic plasticity. However, little is known on how plant responses to herbivory are modulated by environmental variation along ecological gradients. To investigate this question, we used bilberry (Vaccinium myrtillus L.) plants and an experimental treatment to induce plant defenses (i.e., application of methyl jasmonate; MeJA), to observe ecological responses and gene expression changes along an elevational gradient in a boreal system in western Norway. The gradient included optimal growing conditions for bilberry in this region (ca. 500 m a.s.l.), and the plant's range limits at high (ca. 900 m a.s.l.) and low (100 m a.s.l.) elevations. Across all altitudinal sites, MeJA‐treated plants allocated more resources to herbivory resistance while reducing growth and reproduction than control plants, but this response was more pronounced at the lowest elevation. High‐elevation plants growing under less herbivory pressure but more resource‐limiting conditions exhibited consistently high expression levels of defense genes in both MeJA‐treated and untreated plants at all times, suggesting a constant state of “alert.” These results suggest that plant defense responses at both the molecular and ecological levels are modulated by the combination of climate and herbivory pressure, such that plants under different environmental conditions differentially direct the resources available to specific antiherbivore strategies. Our findings are important for understanding the complex impact of future climate changes on plant–herbivore interactions, as this is a major driver of ecosystem functioning and biodiversity.  相似文献   

3.
A better knowledge of the plant-availability of nitrogen (N) and phosphorus (P) in organic products may help to improve the efficient use of these products as fertilizers. In the present study, availability indices for N and P of nine widely differing organic products obtained by different fractionation methods were compared with the plant uptake of N and P from these products. The fractionation methods included CaCl2 extraction, thermal fractionation (heating of organic products), and pepsin extraction, for N, and extraction with diluted sulphuric acid, P-Bray-I, P-Olsen, and extraction using an iron oxide coated filter paper, for P. The results of pot experiments with ryegrass using a double-pot technique (Janssen, 1990) over 62 (N experiment) and 93 days (P experiment) were used as reference for plant-availabe N and P. The 0.01 M CaCl2 extractable inorganic N reasonably predicted plant-available N only in organic products with a high inorganic N fraction. Thermal fractionation and pepsin extraction provided a reasonable index for mineralizable N in organic products having a high fraction of mineralizable N. Of the P fractionation methods, the extraction using iron oxide coated filter paper was the best indicator of plant-available P in the products.  相似文献   

4.
The distribution of photosynthates in the body of vascular plants is examined by the methods of electron and confocal fluorescent microscopy in lifetime dynamics and using fixed preparations. It is shown that system relations of cells are provided by the “trophic tract,” i.e., endoplasmic membrane meshwork, which is induced by photosynthesis and moves along plasmodesmata from photosynthetic cells to meristematic cells consuming photosynthates. The structure and functions of the trophic tract are controlled by the actomyosin contractile apparatus of the cytoskeleton. Climatic cooling and aridization in the Neogene caused the loss of plasticity of the actomyosin complex, elimination of plasmodesmata, and fragmentation of the trophic tract, which were accompanied by partial transition of plants to the distribution of photosynthates through the apoplast. This caused the appearance in the Miocene of perennial and annual herbs, with the trophic tract composed of particular domains without plasmodesmal connections. In contrast to the continuous endoplasmic trophic tract of trees, the apoplastic tract of herbs is inefficient, since transdomain transport of sugar along the apoplast is connected with high energy consumption. However, it is free from the influence of cold temperatures and deficiency in water or mineral supply. The cost for phylogenetic adaptogenesis of vascular plants to the Neogene climatic cooling and aridization is a fourfold increase in genome size. The morphofunctional consequences are reduction of cell systems and life forms in connection with the energy problems induced by fragmentation of the trophic tract.  相似文献   

5.
西藏草地植物功能性状与多项生态系统服务关系   总被引:2,自引:0,他引:2  
针对植被功能性状与生态系统服务功能之间的相互关系,构建了西藏草地株高和可食性两种功能性状的9项指标,并基于土壤和植物采样,分析了9项植物功能性状指标和5项生态系统服务指标间的相关性,探讨了4种机制(Mass ratio,Selection,Niche complementarity及Insurance)在西藏草地的适用性。结果表明,9项功能性状指标中,株高Rao和可食种与所有种株高CWM比分别与土壤有机碳、土壤全氮和土壤含水率3项生态系统服务指标呈显著负相关及显著正相关。说明群落植被对光能竞争的互补性及可食性状植株在群落中的光能资源相对竞争力,与土壤固碳、肥力供给及水源涵养有显著相关关系。而群落可食种、优势种、优势种与次优势种对光能资源竞争力水平,可食植株多样性、可食植株在群落中的优势度及其光能资源竞争力均值,对草地生态系统服务无显著影响。西藏草地植物功能性状对多项生态系统服务的影响机制从光能资源竞争角度更符合Niche complementarity和Insurance理论,而从可食功能性状角度更符合Mass ratio和Selection理论。  相似文献   

6.
Genetic data suggest that the littoral and pelagic forms of brook charr Salvelinus fontinalis in Lake Bondi are two populations with partial reproductive isolation and non-random mating. Genetic differentiation between the two groups was supported by differences in allele frequencies and by deviation from Hardy-Weinberg equilibrium when the two groups were pooled; no such deviation was observed when fish were divided into littoral and pelagic groups. In contrast to Lake Bondi, no clear evidence of genetic differentiation was observed in Lake Ledoux. Discriminant function analyses of morphological characters support the existence of littoral and pelagic groups in Bondi and Ledoux Lakes. In Lake Bondi, the two groups differed significantly in two shape variables (pelagic fish had shorter dorsal fins, and longer body length posterior to the dorsal fin than littoral ones) whereas in Lake Ledoux, the groups differed in four shape variables (pelagic fish had shorter pectoral fins, shorter dorsal fins, and a shorter and higher caudal peduncle than littoral ones). Discriminant analyses of these characters were effective in reclassifying fish into their appropriate groups in both populations, with an efficiency of 78% for juveniles in Lake Bondi and 69% for adults in Lake Ledoux. Differences in morphology between the two forms are consistent with adaptations required to forage in each zone, i.e. benthic form in the littoral zone and planktivorous form in the pelagic zone.  相似文献   

7.
8.
This study examined the effects of temporal changes in bacterial community composition (BCC) and environmental factors on potential ectoenzymatic activities (α-glucosidase, β-glucosidase, alkaline phosphatase and leucine aminopeptidase) in a lacustrine ecosystem (Sep reservoir, France). BCC was assessed by terminal restriction fragment length polymorphism. Physical parameters, and inorganic and organic nutrient concentrations (dissolved carbohydrates and proteins) were measured in lakes and tributaries. According to the multivariate statistics (redundancy analysis), physical and chemical factors explained the largest part of leucine aminopeptidase activity, whereas the temporal changes of other ectoenzymatic activities were partly dependent on the variations in the BCC. In particular, the occurrence of occasional bacterial populations seemed to explain a lot of the variation in rates and patterns of polymer hydrolysis. The relation observed in this study between the bacterial structure and activity is discussed within the framework of biodiversity–ecosystem functioning.  相似文献   

9.
基因组大小在被子植物物种之间存在着巨大的变异, 但目前对不同生活型被子植物功能性状与基因组大小的关系缺乏统一的认识。本研究基于被子植物245科2,226属11,215个物种的基因组大小数据, 探讨了不同生活型物种种子重量、最大植株高度和叶片氮、磷含量4个功能性状与基因组大小之间的关系。结果表明, 被子植物最大植株高度和种子重量与基因组大小间的关系在草本和木本植物中存在显著差异。草本植物最大植株高度与基因组大小的关系不显著, 但种子重量与其呈极显著的正相关关系。木本植物最大植株高度与基因组大小显著负相关, 但种子重量与其关系不显著。木本植物叶片氮含量与基因组大小呈显著正相关, 但其他生活型植物的叶片氮、磷含量与基因组大小均无显著相关性。本研究表明被子植物功能性状与基因组大小的相关性在不同生活型间存在差异, 这为深入研究植物多种功能性状和植物生活型与基因组大小的权衡关系在植物演化和生态适应中的作用提供了重要依据。  相似文献   

10.
植物生活史型的划分及其相互转化   总被引:5,自引:6,他引:5  
基于环境条件的变化,分析了植物在完成生活史过程中,营养生长、克隆生殖和有性生殖过程的权衡的结果直接导致的植物生活史型形成以及相互转化过程。根据胁迫和扰动程度将植物的生境划分为基本生境型、特殊过渡型和过渡型,其中过渡型(EDF)在自然界中具有普遍意义;与生境过渡型(EDF)相对应,植物形成的生活史型也为过渡生活史型(VCS),其基本型V、C和S以及特殊过渡型VC、VS和CS是其特例。植物的生活史型过渡型(VCS)具有普适性意义,在生境调控下的任一种植物生活史型均可表示为Vx1Cx2Sx3。植物生活史型的相互转化与其生境类型的相互转变是完全对应的,这种相互转化的过程和途径是复杂的,且具有可逆性的特点。  相似文献   

11.
新疆北部森林生态系统地衣植物生活型分析   总被引:2,自引:0,他引:2  
Life forms of lichen of forest ecosystem in Northern Xinjiang were researched in the Kanas National Natural Reservation Area.They have been grouped into 6 types:Epipetria,Soil-epipetria,Epiphytia arboricosa,Epiphytia moss,Epiphytis grass and Dry-radicantia,in which the species of Epiphytia arboricosa account for 36.89% of the total species in this area,the species of Epipetria for 22.33% and Epiphytia grass the least.The results show that life forms of lichem at the srea in Northem Xinjiang are relatively rich,which indicates the biodiversity characteristics of lichen.  相似文献   

12.
Biodiversity and Conservation - We evaluated patterns of herbivory and predation/scavenging by a small mammal, the arctic ground squirrel (Urocitellus parryii), as an indicator of biological...  相似文献   

13.
Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old-field plant species (Solidago altissima) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO(2) exchange (GEE) and net ecosystem CO(2) exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first- and last-day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old-field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations.  相似文献   

14.
Hybridization is a common phenomenon in Daphnia species complexes. Hybrids often dominate in Daphnia populations; therefore it is worthwhile to look for principal differences between parental and hybrid populations with respect to their genetic structure and clonal differentiation. We studied natural populations of members of the Daphnia galeata/hyalina/cucullata complex in three lakes. In one of these lakes, one parental species (D. galeata) and one hybrid (D. galeata × cucullata) were investigated more intensively. The frequency of sexual reproduction was higher in parental populations, whereas clonal diversity was higher in hybrid populations. Ecological differentiation among clonal groups was more pronounced in the D. galeata × cucullata hybrid compared to D. galeata, whereas selection intensity was weaker. These results are discussed with respect to stability of clonal groups, multiple hybridizations and selective constraints.  相似文献   

15.
This study examined whether insects can alter relationships between plant species diversity and ecosystem function in grassland communities, by (i) altering biomass across a plant diversity gradient, (ii) altering relative abundances of plant species, or (iii) altering ecosystem function directly. We measured herbivore damage on seminatural grassland plots planted with 1, 2, 4, 8, or 12 plant species, and compared plant biomass in a subset of these plots with replicates in which insect levels were reduced. Plant biomass and herbivore damage increased with species richness. Reducing insect populations resulted in greater evenness of relative plant species abundances and revealed a strong positive relationship between plant species richness and above-ground biomass. Reducing insects also changed the relationship between plant species richness and decomposition. Plant species mixtures and their relative abundances partially explained plant biomass results, but not decomposition results. These results suggest that insects can alter relationships between plant diversity and ecosystem processes through all three mechanisms.  相似文献   

16.
1 Responses to spatial heterogeneity of soil nutrients were tested in 10 plant species that differ in life form and successional status, but which co-occur in the South Carolina coastal plain. The morphological responses of the root system were tested by assessing scale (represented by root mass and root length densities), precision (preferential proliferation of roots in nutrient-rich patches compared with less fertile patches) and discrimination (ability to detect and proliferate within the richest patches when patches vary in nutrient concentration). We also investigated sensitivity (growth benefits gained as spatial heterogeneity of nutrients increases, measured as total biomass).
2 Ten individuals of each species were grown in pots under four treatments that had differing nutrient distribution but the same overall nutrient addition. Plants were harvested when roots reached pot edge.
3 We observed high variation between species in scale, precision and sensitivity. No significant discrimination responses were observed, although greatest root mass density occurred at intermediate fertility levels for all species.
4 We rejected the hypothesis that scale and precision are negatively correlated. Indeed, in herbaceous species alone, scale and precision were positively correlated.
5 Sensitivity was not closely related to precision, indicating that proliferation of roots in fertile patches does not always yield growth benefits in heterogeneous soils. Further, some sensitive species had very low precision, suggesting that a positive growth response in heterogeneous environments may be related to plasticity in physiology or root life span, rather than morphology.
6 Plant life form was not correlated with precision or sensitivity. However, scale of response was greater in herbs than in woody plants, possibly because the two life forms develop root systems at different rates.  相似文献   

17.
Plant hydraulic conductance, namely the rate of water flow inside plants per unit time and unit pressure difference, varies largely from plant to plant and under different environmental conditions. Herein the main factors affecting: (a) the scaling between whole‐plant hydraulic conductance and leaf area; (b) the relationship between gas exchange at the leaf level and leaf‐specific xylem hydraulic conductance; (c) the short‐term physiological regulation of plant hydraulic conductance under conditions of ample soil water, and (d) the long‐term structural acclimation of xylem hydraulic conductance to changes in environmental conditions are reviewed. It is shown that plant hydraulic conductance is a highly plastic character that varies as a result of multiple processes acting at several time scales. Across species ranging from coniferous and broad‐leaved trees to shrubs, crop and herbaceous species, and desert subshrubs, hydraulic conductance scaled linearly with leaf area, as expected from first principles. Despite considerable convergence in the scaling of hydraulic properties, significant differences were apparent across life forms that underlie their different abilities to conduct gas exchange at the leaf level. A simple model of carbon allocation between leaves and support tissues explained the observed patterns and correctly predicted the inverse relationships with plant height. Therefore, stature appears as a fundamental factor affecting gas exchange across plant life forms. Both short‐term physiological regulation and long‐term structural acclimation can change the levels of hydraulic conductance significantly. Based on a meta‐analysis of the existing literature, any change in environmental parameters that increases the availability of resources (either above‐ or below‐ground) results in the long‐term acclimation of a less efficient (per unit leaf area) hydraulic system.  相似文献   

18.
The aim of this study was to define and examine the relationships between the anthropometrical characteristics, maximum isometric grip strength, and competition throwing velocities and efficacy indices in high-level water polo player. Eleven elite trained male water polo players participated in this study. During preseason training, the following measures were taken: standard anthropometry (height, body mass, arm spam, skinfolds, body girths, and skeletal breadths) and grip strength. During official European Competitions (n = 7), efficacy indices (offensives: shot definition, resolution, precision, blocked and defensives: shot resolution when defending and shots stopped when defending), average and maximum throwing velocities from all the participants by zones and in some offensive tactical phases (even, counterattacks and power play) were also determined. Throwing velocities were different (p ≤ 0.05) between some of the offensive tactical phases (even = 17.9 ± 2.4 vs. power play = 16.7 ± 2.6 m·s(-1)). In addition, significant correlations were found between competitive throwing velocities and different offensive efficacy indices. We concluded that there were significant correlations between conditioning and performance variables with anthropometrical characteristics and offensive tactical indices (blocked shots received and shot precision). Coaches should pay attention to these indices for the development of performance throughout the season.  相似文献   

19.
植物多样性与植物竞争强度和生态位重叠度的关系会随环境发生变化。为探究上述关系在若尔盖地区的表现形式,于2021年8月对若尔盖地区典型的水生、湿生、湿生-中生和中生植物群落进行调查,构建了新的植物竞争强度(Competition intensity,CI)公式并进行测算,计算了植物群落的植物多样性指数(包括物种丰富度、Shannon-Weiner指数、Simpson指数和Pielou均匀度指数)和生态位重叠度(Niche overlap of species,NOS),分析了植物群落物种多样性指数与CI和NOS的关系。结果表明:1)从水生到中生生境,植物多样性指数均呈增加趋势(P<0.05);2)湿生-中生生境的CI显著高于湿生生境(P<0.05),湿生生境的NOS高于水生生境(P<0.05);CI与NOS无显著相关性,但在湿生生境中两者呈倒抛物线关系(P<0.05)。3)整体来看,植物群落的物种丰富度与CI呈抛物线关系(P<0.05),与NOS无显著关系(P>0.05);Shannon-Weiner指数、Simpson指数和Pielou均匀度指数均与NOS呈线性正相关(P<0.05),与CI无显著关系(P>0.05);从单个生境看,湿生-中生生境的Simpson指数、Shannon-Weiner指数和Pielou均匀度指数与CI呈线性负相关(P<0.05),其余生境的上述多样性指数与CI无显著关系(P>0.05);各生境的植物多样性指数均与NOS无显著相关性(P>0.05)。本研究表明,从水生到中生生境,若尔盖地区的植物多样性呈增加趋势,但植物多样性与物种竞争强度和生态位重叠度的关系较复杂。本研究结果有助于理解若尔盖高原植物多样性的形成机制。  相似文献   

20.
Shade, in ecological sense, is not merely a lack of light, but a multi-faceted phenomenon that creates new and complex settings for community and ecosystem dynamics. Tolerating shade therefore affects plants’ ability to cope with other stressors, and also shape its interactions with surrounding organisms. The aim of this broad review was to map our current knowledge about how shade affects plants, plant communities and ecosystems – to gather together knowledge of what we know, but also to point out what we do not yet know. This review covers the following topics: the nature of shade, and ecological and physiological complexities related to growing under a canopy; plants’ capability of tolerating other stress factors while living under a shade – resource trade-offs and polytolerance of abiotic stress; ontogenetic effects of shade tolerance; coexistence patterns under the canopy – how shade determines the forest structure and diversity; shade-induced abiotic dynamics in understorey vegetation, including changing patterns of irradiance, temperature and humidity under the canopy; shade-driven plant–plant and plant–animal interactions – how shade mediates facilitation and stress, and how it creates differentiated environment for different herbivores and pollinators, including the role of volatile organic compounds. We also discuss the ways how vegetation in understorey environments will be affected by climate change, as shade might play a significant role in mitigating negative effects of climate change. Our review shows that living under a shade affects biotic and abiotic stress tolerance of plants, it also influences the outcomes of both symbiotic and competitive plant–plant and plant–animal interactions in a complex and dynamic manner. The current knowledge of shade-related mechanisms is rather ample, however there is much room for progress in integrating different implications of the multifaceted nature of shade into consistent and integral understanding how communities and ecosystems function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号