首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Numerous nonparametric approaches have been proposed in literature to detect differential gene expression in the setting of two user-defined groups. However, there is a lack of nonparametric procedures to analyze microarray data with multiple factors attributing to the gene expression. Furthermore, incorporating interaction effects in the analysis of microarray data has long been of great interest to biological scientists, little of which has been investigated in the nonparametric framework.  相似文献   

2.

Background  

Previous differential coexpression analyses focused on identification of differentially coexpressed gene pairs, revealing many insightful biological hypotheses. However, this method could not detect coexpression relationships between pairs of gene sets. Considering the success of many set-wise analysis methods for microarray data, a coexpression analysis based on gene sets may elucidate underlying biological processes provoked by the conditional changes. Here, we propose a differentially coexpressed gene sets (dCoxS) algorithm that identifies the differentially coexpressed gene set pairs between conditions.  相似文献   

3.

Background  

The underlying goal of microarray experiments is to identify gene expression patterns across different experimental conditions. Genes that are contained in a particular pathway or that respond similarly to experimental conditions could be co-expressed and show similar patterns of expression on a microarray. Using any of a variety of clustering methods or gene network analyses we can partition genes of interest into groups, clusters, or modules based on measures of similarity. Typically, Pearson correlation is used to measure distance (or similarity) before implementing a clustering algorithm. Pearson correlation is quite susceptible to outliers, however, an unfortunate characteristic when dealing with microarray data (well known to be typically quite noisy.)  相似文献   

4.

Background  

Microarray technology is a powerful methodology for identifying differentially expressed genes. However, when thousands of genes in a microarray data set are evaluated simultaneously by fold changes and significance tests, the probability of detecting false positives rises sharply. In this first microarray study of brachial plexus injury, we applied and compared the performance of two recently proposed algorithms for tackling this multiple testing problem, Significance Analysis of Microarrays (SAM) and Westfall and Young step down adjusted p values, as well as t-statistics and Welch statistics, in specifying differential gene expression under different biological States.  相似文献   

5.

Background  

Various methods for estimating protein expression levels are known. The level of correlation between these methods is only fair, and systematic biases in each of the methods cannot be ruled out. We here investigate systematic biases in the estimation of gene expression rates from microarray data and from abundance within the Expressed Sequence Tag (EST) database. We suggest that length is a significant factor in biases to measured gene expression rates.  相似文献   

6.

Background

Differential gene expression is important to understand the biological differences between healthy and diseased states. Two common sources of differential gene expression data are microarray studies and the biomedical literature.

Methods

With the aid of text mining and gene expression analysis we have examined the comparative properties of these two sources of differential gene expression data.

Results

The literature shows a preference for reporting genes associated to higher fold changes in microarray data, rather than genes that are simply significantly differentially expressed. Thus, the resemblance between the literature and microarray data increases when the fold-change threshold for microarray data is increased. Moreover, the literature has a reporting preference for differentially expressed genes that (1) are overexpressed rather than underexpressed; (2) are overexpressed in multiple diseases; and (3) are popular in the biomedical literature at large. Additionally, the degree to which diseases are similar depends on whether microarray data or the literature is used to compare them. Finally, vaguely-qualified reports of differential expression magnitudes in the literature have only small correlation with microarray fold-change data.

Conclusions

Reporting biases of differential gene expression in the literature can be affecting our appreciation of disease biology and of the degree of similarity that actually exists between different diseases.
  相似文献   

7.

Background  

An important emerging trend in the analysis of microarray data is to incorporate known pathway information a priori. Expression level "summaries" for pathways, obtained from the expression data for the genes constituting the pathway, permit the inclusion of pathway information, reduce the high dimensionality of microarray data, and have the power to elucidate gene-interaction dependencies which are not already accounted for through known pathway identification.  相似文献   

8.

Background  

The disparate results from the methods commonly used to determine differential expression in Affymetrix microarray experiments may well result from the wide variety of probe set and probe level models employed. Here we take the approach of making the fewest assumptions about the structure of the microarray data. Specifically, we only require that, under the null hypothesis that a gene is not differentially expressed for specified conditions, for any probe position in the gene's probe set: a) the probe amplitudes are independent and identically distributed over the conditions, and b) the distributions of the replicated probe amplitudes are amenable to classical analysis of variance (ANOVA). Log-amplitudes that have been standardized within-chip meet these conditions well enough for our approach, which is to perform ANOVA across conditions for each probe position, and then take the median of the resulting (1 - p) values as a gene-level measure of differential expression.  相似文献   

9.

Background  

Many researchers are concerned with the comparability and reliability of microarray gene expression data. Recent completion of the MicroArray Quality Control (MAQC) project provides a unique opportunity to assess reproducibility across multiple sites and the comparability across multiple platforms. The MAQC analysis presented for the conclusion of inter- and intra-platform comparability/reproducibility of microarray gene expression measurements is inadequate. We evaluate the reproducibility/comparability of the MAQC data for 12901 common genes in four titration samples generated from five high-density one-color microarray platforms and the TaqMan technology. We discuss some of the problems with the use of correlation coefficient as metric to evaluate the inter- and intra-platform reproducibility and the percent of overlapping genes (POG) as a measure for evaluation of a gene selection procedure by MAQC.  相似文献   

10.

Background  

Gene set enrichment analysis (GSEA) is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. GSEA is especially useful when gene expression changes in a given microarray data set is minimal or moderate.  相似文献   

11.

Background  

It is widely accepted that orthologous genes between species are conserved at the sequence level and perform similar functions in different organisms. However, the level of conservation of gene expression patterns of the orthologous genes in different species has been unclear. To address the issue, we compared gene expression of orthologous genes based on 2,557 human and 1,267 mouse samples with high quality gene expression data, selected from experiments stored in the public microarray repository ArrayExpress.  相似文献   

12.
STEM: a tool for the analysis of short time series gene expression data   总被引:2,自引:0,他引:2  

Background  

Time series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.  相似文献   

13.

Background  

Sustained research on the problem of determining which genes are differentially expressed on the basis of microarray data has yielded a plethora of statistical algorithms, each justified by theory, simulation, or ad hoc validation and yet differing in practical results from equally justified algorithms. Recently, a concordance method that measures agreement among gene lists have been introduced to assess various aspects of differential gene expression detection. This method has the advantage of basing its assessment solely on the results of real data analyses, but as it requires examining gene lists of given sizes, it may be unstable.  相似文献   

14.

Background

Microarray gene expression data are accumulating in public databases. The expression profiles contain valuable information for understanding human gene expression patterns. However, the effective use of public microarray data requires integrating the expression profiles from heterogeneous sources.

Results

In this study, we have compiled a compendium of microarray expression profiles of various human tissue samples. The microarray raw data generated in different research laboratories have been obtained and combined into a single dataset after data normalization and transformation. To demonstrate the usefulness of the integrated microarray data for studying human gene expression patterns, we have analyzed the dataset to identify potential tissue-selective genes. A new method has been proposed for genome-wide identification of tissue-selective gene targets using both microarray intensity values and detection calls. The candidate genes for brain, liver and testis-selective expression have been examined, and the results suggest that our approach can select some interesting gene targets for further experimental studies.

Conclusion

A computational approach has been developed in this study for combining microarray expression profiles from heterogeneous sources. The integrated microarray data can be used to investigate tissue-selective expression patterns of human genes.
  相似文献   

15.

Background  

It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types.  相似文献   

16.

Background  

All currently available methods of network/association inference from microarray gene expression measurements implicitly assume that such measurements represent the actual expression levels of different genes within each cell included in the biological sample under study. Contrary to this common belief, modern microarray technology produces signals aggregated over a random number of individual cells, a "nitty-gritty" aspect of such arrays, thereby causing a random effect that distorts the correlation structure of intra-cellular gene expression levels.  相似文献   

17.

Background

The massive scale of microarray derived gene expression data allows for a global view of cellular function. Thus far, comparative studies of gene expression between species have been based on the level of expression of the gene across corresponding tissues, or on the co-expression of the gene with another gene.

Results

To compare gene expression between distant species on a global scale, we introduce the "expression context". The expression context of a gene is based on the co-expression with all other genes that have unambiguous counterparts in both genomes. Employing this new measure, we show 1) that the expression context is largely conserved between orthologs, and 2) that sequence identity shows little correlation with expression context conservation after gene duplication and speciation.

Conclusion

This means that the degree of sequence identity has a limited predictive quality for differential expression context conservation between orthologs, and thus presumably also for other facets of gene function.  相似文献   

18.

Background  

The quality of cDNA microarray data is crucial for expanding its application to other research areas, such as the study of gene regulatory networks. Despite the fact that a number of algorithms have been suggested to increase the accuracy of microarray gene expression data, it is necessary to obtain reliable microarray images by improving wet-lab experiments. As the first step of a cDNA microarray experiment, spotting cDNA probes is critical to determining the quality of spot images.  相似文献   

19.

Background  

DNA microarray technology allows for the measurement of genome-wide expression patterns. Within the resultant mass of data lies the problem of analyzing and presenting information on this genomic scale, and a first step towards the rapid and comprehensive interpretation of this data is gene clustering with respect to the expression patterns. Classifying genes into clusters can lead to interesting biological insights. In this study, we describe an iterative clustering approach to uncover biologically coherent structures from DNA microarray data based on a novel clustering algorithm EP_GOS_Clust.  相似文献   

20.

Background  

With the advance of microarray technology, several methods for gene classification and prognosis have been already designed. However, under various denominations, some of these methods have similar approaches. This study evaluates the influence of gene expression variance structure on the performance of methods that describe the relationship between gene expression levels and a given phenotype through projection of data onto discriminant axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号