首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The individual and combined effects of water activity (aw), bulk viscosity and glass transition temperature (Tg’) on the activity of horseradish peroxidase (HRP) in buffered sugars (glucose, trehalose and maltose) and maltodextrin solutions were investigated. Viscosity was the most important factor in the inhibition of HRP activity; however, when Tg’ was changed by the using solutes with different molecular weight, it became a key factor in the modulation of enzyme activity. Viscosity being equal, the sugar addition to maltodextrin solution lowered aw and lowered Tg’ causing an increase of the enzymatic activity. Nevertheless, an inhibition of the HRP activity occurred when aw values of 0.87 were reached due to the addition of glucose, which, among the tested sugars, showed the lowest molecular weight. Among disaccharides, maltose was more effective than trehalose in impairing the enzyme activity both in binary and ternary systems, and this is due to a non competitive biochemical inhibition exerted by this sugar on HRP. When compared to glucose, maltose and trehalose were more effective in reducing HRP activity only in the low viscosity range whilst in the high viscosity range (1–4 10?6 m2 s?1) glucose, despite its lower Tg’ value, was slightly more efficient than disaccharides due to its aw lowering effect.  相似文献   

2.
The benefits of controlling water activity, a w, during enzymatically catalysed synthesis reactions, such as reverse-hydrolytic reactions promoted by lipases, are now well recognized. Numerous techniques for controlling a w in the laboratory and their implementation in continuous reactors have been discussed in the published literature. However, in enzymatic interesterification reactions, such as acidolysis and transesterification, it is not appropriate merely to maintain the a w of the reaction system at one value since the two stages of the reaction, namely the cleavage of the original acyl bond and the formation of a new one, are best carried out at different levels of water activity – the former at a high a w and the latter at a lower one. The use of a continuous packed-bed hollow-fibre reactor has been described in this article for carrying out solvent-free acidolysis of ethyl laurate with octanoic acid with in situ a w control, using air that has been pre-equilibrated with saturated salt solutions to the desired a w. At a single optimum (a w = 0.54), the highest steady-state conversion to ethyl octanoate was 32%. However, it is possible to obtain a steady-state conversion of 46% by operating the reactor with a step change in the water activity, from an initial value of unity to 0.23. Received: 10 February 1998 / Received revision: 2 June 1998 / Accepted: 7 June 1998  相似文献   

3.
A Phoma sp., known to produce the pharmaceutically active metabolites squalestatin 1 (S1) and squalestatin 2 (S2), was cultured on malt-extract/agar (MEA) over a range of water activities (a w, 0.995–0.90) and temperatures (10–35 °C) to investigate the influence on growth and metabolite production. Use of the ionic solute NaCl to adjust a w resulted in significantly lower (P < 0.01) squalestatin yields than when the Phoma sp. was grown on MEA amended with the non-ionic solute glycerol. Water activity and temperature and their interactions were highly significant factors (P < 0.001) affecting growth of the Phoma sp., with optimum conditions of 0.998–0.980 a w and 25 °C. Squalestatin production was similarly influenced by a w, temperature, time and their interactions (P < 0.001). S1 and S2 production occurred over a narrower a w and temperature range than growth, with a slightly lower optimum a w range of 0.995–0.980 a w. The optimum temperature for squalestatin production varied from 20 °C (S1) to 25 °C (S2) and yields of S2 were up to 1000 times lower than those of S1. The ratio of S1 and S2 produced by the Phoma sp. was influenced by a w and temperature, with highest values at 0.99–0.98 a w, and at 15 °C. Incubation times of 28 days gave highest yields of both S1 and S2. Up to 2000-fold increases in squalestatin yields were measured at optimum environmental conditions, compared to the unmodified MEA. This indicates the need to consider such factors in screening systems used to detect biologically active lead compounds produced by fungi. Received: 2 June 1997 / Received last revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

4.
Studies were carried out to utilize in situ proteases of shrimp heads to recover carotenoproteins possessing antioxidant activity. Highest protease activity of the buffer extract was found at pH 8.0 (9.85 ± 0.61 units). The protease activity increased with temperature up to 50°C and reduced thereafter with highest activity being 19.32 ± 2.0 units. Thus, the autolysis of shrimp heads for recovery of carotenoprotein was carried out at pH 8.0 and at 50°C. Waste to buffer ratio had a significant (p < 0.05) effect on recovery of carotenoids in carotenoprotein filtrate with a maximum of 58.5 ± 6.4% recovery with a waste to buffer ratio of 1:2.5 (w:v). The carotenoid recovery increased significantly to 63.4% ± 3.6% at the end of a 4-h autolysis. The studies on combined effect of waste to buffer ratio and autolysis time indicated increase in protein recovery with increase in waste to buffer ratio but not with autolysis time. DPPH scavenging activity of the carotenoprotein isolate increased with autolysis time up to 100 min, and thereafter, reduced above 160 min of autolysis time. With increase in waste to buffer ratio, the scavenging activity increased, reaching more than 12.5 mg TBHQ equivalent/mg protein at waste to buffer ratio of 1:5. The optimum autolysis condition for obtaining antioxidant activity rich carotenoprotein from shrimp heads was found to be waste to buffer (pH 8.0) ratio of 1:5 and an autolysis time of 2 h at 50°C. The isolated carotenoprotein was found to have antioxidant activity with respect to singlet oxygen quenching, reducing power and metal chelating activity.  相似文献   

5.
The viability and thermal stability of a freeze-dried yeast strain were studied in relation to some physical properties of the matrices in which the cells were freeze-dried. Samples of inoculum with solutions of the matrix components [polyvinylpyrrolidone (PVP), maltose, trehalose, maltodextrins, or mixtures of maltodextrin and trehalose] and controls without matrices were freeze-dried and then equilibrated at several relative humidities. Viability was determined before and after freeze-drying and after heat treatment (100 min at 70 °C). Freeze-drying with trehalose, PVP, maltose or 1.8-kDa maltodextrin, and mixtures of maltodextrin/trehalose increased viability in comparison with controls. The 3.6-kDa maltodextrin was ineffective at protecting the cells during freeze-drying. The glass transition temperature (T g), which depends on moisture content, was indicated as a possible factor to determine the stability of labile materials. Protective effects of the excipients during thermal treatment were analysed in relation to the physical changes (collapse or structural shrinkage) which were dependent on the T g of the systems. The presence of a certain amount of amorphous disaccharides during freeze-drying and heating was found to be a critical factor for ensuring cell viability, which was protected even in rubbery (above T g) matrices. Received: 4 December 1998 / Received last revision: 2 March 1999 / Accepted: 14 March 1999  相似文献   

6.
Camu-camu is a tropical fruit with very high vitamin C content and commercialized as frozen pulp. Enthalpies of freezing, temperatures of the onset of ice melting, and glass transition temperatures of the maximally freeze-concentrated phase () of camu-camu pulp and of samples containing maltodextrin (DE20) and sucrose were measured by differential scanning calorimetry. Maltodextrin exhibited the largest freeze stabilization potential, increasing from −58.2 °C (natural pulp) to −39.6 °C when 30% (w/w) maltodextrin DE 20 was added. Sucrose showed negligible effect on but enhanced considerably the freezing point depression and less amount of ice was formed.  相似文献   

7.
Cui  Lijie  Chen  Yuhui  Shen  Guoan  Zhao  Lingxia  Tang  Kexuan 《Plant Molecular Biology Reporter》2011,29(2):466-472
Thymosin α1 (Tα1) was widely used for the treatment of hepatitis (B and C) and several cancers. However, current production of Tα1 is difficultly meeting clinical needs. To develop a novel and safety approach for Tα1 production, we synthesized a Tα1 gene (124 bp) based on the plant codon usage bias and constructed a four-copy Tα1 gene concatemer (408 bp) by using isocaudamer technique. This 4 × Tα1 structure was cloned into plant binary expression vector pCAMBIA2300 with twin transfer deoxyribonucleic acids (T-DNAs) and integrated into lettuce genome via Agrobacterium-mediated transformation. Thirteen positive plants were identified by polymerase chain reaction and confirmed by Southern blot analysis, and 11 marker-free lettuce plants were obtained in T2 generation. The content of recombined Tα1 (rTα1) protein reached 1798.317 ± 87.312 ng/g in fresh leaves of transgenic lettuce. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay demonstrated that rTα1 protein stimulated mouse splenic lymphocyte proliferation in vitro. These data suggest that biologically active rTα1 was successfully expressed in marker-free transgenic lettuce, and this method could provide an alternative choice for large-scale production of Tα1 in the future.  相似文献   

8.
The effects of monovalent and divalent cations on the rheological behavior of Halomonas eurihalina exopolysaccharide (EPS) were studied. Sodium, potassium, magnesium and calcium were added and the relative abilities to increase viscosity were as follows: KCl > NaCl > MgCl2 > CaCl2. The highest viscosity value was measured in acidic 10−4 M KCl, in which a gel formed. A loss of sulfate content seemed to correlate with the increase of viscosity. H. eurihalina produced EPS in all growth media. Addition of hydrophobic substrates to culture media produced changes in chemical composition and emulsifying activity of the EPS. Xylene was the most effectively emulsified substance and the EPS produced on tetradecane and on corn oil the most active emulsifier. Received 25 July 1997/ Accepted in revised form 30 January 1998  相似文献   

9.
Kutzli  Ines  Beljo  Dario  Gibis  Monika  Baier  Stefan K.  Weiss  Jochen 《Food biophysics》2020,15(2):206-215

Compared to commonly applied wet and dry heating procedures, a combination of electrospinning and heat treatment can facilitate glycation of proteins with reducing polysaccharides. This study investigates how the amount of reducing carbonyl groups (i.e. dextrose equivalent, DE) of different maltodextrins influences electrospinnability and subsequent glycation in blends with pea protein isolate (PPI). In the first step of the study, maltodextrin-PPI dispersions were electrospun. The concentrations of PPI and maltodextrin DE 2 were kept constant in the aqueous spinning dispersion. The addition of 0.05 or 0.1 g/mL maltodextrin DE 12 or 21 slightly affected the electrical conductivity and dynamic viscosity of the spinning dispersions, however, fiber production rate and morphology were dominated by the presence of maltodextrin DE 2 (0.8 g/mL). In the second step of the study, fibers were heated (60 °C, 75% rel. Humidity, 0–24 h). SDS-PAGE analysis and the measurement of free amino groups confirmed the covalent attachment of maltodextrin carbonyl groups to free amino groups of PPI. The fastest glycation and the lowest relative amount of free amino groups (49.70 ± 6.54%) after 24 h heating was measured for the fibers with the highest amount of reducing carbonyl groups. The fibers with the lowest amount of reducing carbonyl groups showed no significant (p < 0.05) decrease of free amino groups after heat treatment. The results suggest that within the boundaries of electrospinnability, the degree of glycation can be adjusted by varying the amount of reducing carbonyl groups in the fibers.

  相似文献   

10.
Sixteen strains of polymer-producing bacteria were isolated from the activated sludge samples taken from two seafood processing plants in Southern Thailand. Their culture broths possessed the ability to flocculate kaolin suspension in the presence of 1% CaCl2. Based on the flocculating activity, the strain S11 was selected and identified to be a Klebsiella sp. using the partial 16S rRNA sequencing method. The growth of the isolated Klebsiella sp. was maximal (1.026 g l−1 dry cell mass) after 1 day cultivation while the highest polymer yield (0.973 g l−1) was achieved after 5 days cultivation. The flocculating activity of the culture broth, however, was highest after 2 days cultivation. The polymer was identified to be an acidic polysaccharide containing neutral sugar and uronic acid as its major and minor components, respectively. Results on the properties of the partially purified polysaccharide from Klebsiella sp. S11 revealed that it consisted of galactose, glucose and mannose in an approximate ratio of 5:2:1. It was soluble in acidic or basic solutions but not in organic solvents. Its molecular mass was greater than 2 × 106 Da. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl groups in its molecules. Differential scanning calorimetry of the polysaccharide indicated the crystalline melting point (T m) at 314 °C. The optimum dosage of polysaccharide to give the highest flocculating activity was 15 mg l−1 in the presence of 1% CaCl2. Received: 8 February 1999 / Received last revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

11.
Fractionated samples of sodium hyaluronate of low molecular weight were used to calibrate the carbazole method for glucuronyl analsis and to determine the density increment (based on dry weight) of 0.444 (±0.003) mL/g in water and 0.386 (±0.003) mL/g for samples dialyzed against 0.2M NaCl. Weight-average molecular weights obtained by high-speed sedimentation equilibrium were used to calibrate the limiting viscosity number [η] in 0.2M NaCl, which gave [η]/Mw = 0.0028 (±0.0002) mL/g, valid to Mw = 0.0028 (±0.0002) mL/g, valid to Mw = 105. Experimental data from this work and the literature, including viscosity and light- and small-angle x-ray scattering measurements, were compared to theoretical chain models of the Kratky-Porod (KP) wormlike and the helical wormlike (HW) chain, as treated by Yamakawa and collaborators. Although either model could be fitted to experimental data about equally well with consistent parameters, provided those for the HW chain were of weakly helical nature, calculation of the unperturbed meansquare end-to-end distance as a function of chain length from a conformational model favored the KP chain alternative. The parameters that provide the best fit to experimental data for the KP wormlike model are a persistence length of 4.5–5 nm and a diameter of 1.1 nm. The latter is resonable for a hydrated hydrodynamic cylinder in view of the approximate unhydrated value of 0.7 nm estimated from the density increment.  相似文献   

12.
 Kinetics of the steady-state oxidation of n–alkylferrocenes (alkyl = H, Me, Et, Bu and C5H11) by H2O2 to form the corresponding ferricenium cations catalyzed by horseradish peroxidase has been studied in micellar systems of Triton X-100, CTAB, and SDS, mostly at pH 6.0 and 25  °C. The rate of oxidation of ferrocenes with longer alkyl radicals is too slow to be measured. The reaction obeying the [RFc]:[H2O2] = 2 : 1 stoichiometry is strictly first-order in both HRP and RFc in a wide concentration range. The corresponding observed second-order rate constants k, which refer to the interaction of the peroxidase compound II (HRP-II) with RFc, decrease with the elongation of the alkyl substituent R, and this in turn is accompanied by an increase in the formal redox potentials E°′ in the same medium. Increasing the surfactant concentration lowers the rate constants k, the effect being due to the nonproductive binding of RFc to micelles rather than to enzyme inactivation. The micellar effects are accounted for in terms of the Berezin pseudo-phase model of micellar catalysis applied to the interaction of enzyme with organometallic substrates. The oxidation was found to occur primarily in the aqueous pseudo-phase and the calculated intrinsic second-order rate constants k w are (1.9 ± 0.5)×105, (2.7 ± 0.1)×104, and (5.9 ± 0.6)×103 M–1 s–1 for HFc, EtFc, and n–BuFc, respectively. The data obtained were used for estimating the self-exchange rate constants for the HRP-II/HRP couple in terms of the Marcus formalism. Received: 15 July 1996 / Accepted: 15 November 1996  相似文献   

13.
Physicochemical and structural properties of grapefruit juice powder were investigated as affected by the addition of maltodextrins of two dextrose equivalent (DE) and gum arabic. Freeze-dried powdered juices were equilibrated at different vapor pressure atmospheres, giving samples with water activity between zero and 0.84. The mechanical properties of the powders were assessed by confined compression, and the compressed samples were subjected to color analysis. The maximum force attained during the compression and the color coordinates were related to water activity and glass transition temperature, and a single value of ΔT = T − T g could be taken as the critical limit to the safe storage of the powders, regardless of their composition. The results indicated that from the perspective of the time at which deleterious changes would take place in powders stored at certain ambient conditions and exposed to certain rate of water uptake, the collapse of the powder would precede browning development.  相似文献   

14.
Production of flavour compounds by yogurt starter cultures   总被引:5,自引:0,他引:5  
The present work studied the production of carbonyl compounds and saturated volatile free fatty acids by pure cultures of Streptococcus thermophilus and Lactobacillus bulgaricus, and by starter cultures for Bulgarian yogurt during cultivation and cooling. The mixed cultures formed volatile aromatic compounds more actively than the pure cultures. A guiding factor in the preparation of the starter cultures was the biochemical activity of Lactobacillus bulgaricus in synthesizing the major carbonyl compounds, acetaldehyde, diacetyl and the volatile fatty acids C2–C10. The activity of the yogurt cultures in synthesizing carbonyl compounds was at its highest during milk coagulation and cooling, up to 7 h. However, maximum concentration was reached by 22–31 h. In the cooled 22–h starter cultures, acetaldehyde predominated (1415.0–1734.2 μg per 100 g) followed by diacetyl (165.0–202.0 μg per 100 g), acetoin (170.0–221.0 μg per 100 g), acetone (66.0–75.5 μg per 100 g), ethanol (58.0 μg per 100 g), and butanone-2 (3.6–3.8 μg per 100 g). The thermophilic streptococcus and lactobacillus cultures, and the starter cultures contained predominantly acetic, butyric and caproic acids. Received 19 June 1997/ Accepted in revised form 10 January 1998  相似文献   

15.
By polymerase chain reaction mutagenesis techniques, an NdeI restriction site was introduced at the initiation codon of the mannitol dehydrogenase (MDH) gene (mtlK) of Rhodobacter sphaeroides Si4. The mtlK gene was then subcloned from plasmid pAK74 into the NdeI site of the overexpression vector pET24a+ to give plasmid pASFG1. Plasmid pASFG1 was introduced into Escherichia coli BL21(DE3), which was grown in a 1.5-l bioreactor at 37 °C and pH 7.0. Overexpression of MDH in Escherichia coli BL21(DE3) [pASFG1] was determined by enzymatic analysis and sodium dodecyl sulfate (SDS)/polyacrylamide gel electrophoresis. Under standard growth conditions, E. coli produced considerable amounts of a polypeptide that correlated with MDH in SDS gels, but the activity yield was low. Decreasing the growth temperature to 27 °C and omitting pH regulation resulted in a significant increase in the formation of soluble and enzymatically active MDH up to a specific activity of 12.4 U/mg protein and a yield of 26 000 U/l, which corresponds to 0.38 g/l MDH. This was an 87-fold overexpression of MDH compared to that of the natural host R. sphaeroides Si4, and a 236-fold improvement of the volumetric yield. MDH was purified from E. coli BL21(DE3) [pASFG1] with 67% recovery, using ammo-nium sulfate precipitation, hydrophobic interaction chromatography, and gel filtration. Partial characterization of the recombinant MDH revealed no significant differences to the wild-type enzyme. Received: 18 February 1997 / Received revision: 27 March 1997 / Accepted: 27 March 1997  相似文献   

16.
Wang X  Zhang X  Xu X  Zhang L 《Biopolymers》2012,97(10):840-845
Lentinan (β‐(1→3)‐D ‐glucan) was found to be successfully fractionated by the mixture of dimethyl sulfoxide (DMSO) and lithium chloride (LiCl) as a solvent and acetone as a precipitant. Light scattering and viscosity measurements were made on solutions of fractionated samples in pure DMSO and 0.2M LiCl/DMSO in the range of the molecular weight Mw from 21.7 × 104 to 84.7 × 104. The values of Mw in both solvents were almost the same, but the remarkable difference between the values of intrinsic viscosity [η] demonstrated that the LiCl/DMSO solvent greatly enhances the stiffness of the lentinan backbone. The observed intrinsic viscosity [η] was analyzed by the Yoshizaki‐Nitta‐Yamakawa theory of a worm‐like chain, and the persistence length q and molecular weight per unit contour length ML were determined roughly as 6.0 nm and 890 g nm?1 in 0.2M LiCl/DMSO, and 5.1 nm and 890 g nm?1 in pure DMSO, respectively. This slightly larger persistent length in 0.2M LiCl/DMSO also confirmed the higher stiffness of lentinan enhanced by the LiCl/DMSO solvent. The enhancement of the chain stiffness was ascribed to the electrostatic repulsion because of the hydrogen bonding of the hydroxyl protons of lentinan with the chloride ion, which is in turn associated with the Li+(DMSO)n macrocation complex. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 840–845, 2012.  相似文献   

17.
As a novel important regulator of glucose and lipid metabolism homeostasis, human fibroblast growth factor 21 (hFGF21) has become a potential drug candidate for the treatment of metabolic diseases including obesity, and type 2 diabetes, as well as non-alcoholic fatty liver disease. To improve the production of recombinant hFGF21 to meet the increasing demand in clinical applications, an artificial gene encoding its mature peptide sequence was constructed, cloned into vector pET-3c and then expressed in Escherichia coli Origami B (DE3). Under optimal conditions in a 50-L fermentor, the average bacterial yield and the soluble expression level of recombinant hFGF21 of six batches attained 1750 ± 185 g and 32 ± 1.5%, respectively. The target protein was purified by the combination of nickel-nitrilotriacetic acid affinity chromatography and Sephadex S-100 resin. 5% (w/v) trehalose solution was able to prevent rhFGF21 from degradation effectively. The purity of rhFGF21 was higher than 97%, and the yield was 213 ± 17 mg/L. The preliminary biochemical characterization of rhFGF21 was confirmed using Western blot and peptide map finger analysis. Based on the glucose oxidase–peroxidase assay, the EC50 of glucose uptake activity of the purified rhFGF21 was 22.1 nM.  相似文献   

18.
The purpose of this study was to develop a lyotropic liquid crystalline formulation using the emulsifier vitamin E TPGS and evaluate its behavior after incorporation of a flavonoid, quercetin. The physical (macro and microscopic), chemical (determination of quercetin content by the HPLC method) and functional (determination of quercetin antioxidant activity by DPPH assay) stability of the lamellar liquid crystalline formulation containing flavonoid was evaluated when stored at 4 ± 2 °C; 30 ± 2 °C/70 ± 5% RH (relative humidity) and 40 ± 2 °C/70 ± 5% RH during 12 months. The lamellar liquid crystalline structure of the formulation was maintained during the experiment, however chemical and functional stability results showed a great influence of the storage period in all conditions tested. A significant decrease in quercetin content (approximately 40%) was detected during the first month of storage and a similar significant loss in antioxidant activity was detected after 6 months. The remaining flavonoid content was unchanged during the final 6 months of the experimental period. The results suggest possible interactions between quercetin and the liquid crystalline formulation, which could inhibit or reduce the quercetin activity incorporated in the system. In conclusion, the present study demonstrated that incorporation of quercetin (1%) did not affect the liquid crystalline structure composed of vitamin E TPGS/IPM/PG–H2O (1:1) at 63.75/21.25/15 (w/w/w). Nevertheless, of the total quercetin incorporated in the system only 60% was free to act as an antioxidant.  相似文献   

19.
Classical water relations theory predicts that predawn plant water potential should be in equilibrium with soil water potential (soil Ψw) around roots, and many interpretations of plant water status in natural populations are based on this expectation. We examined this expectation for two salt-tolerant, cold-desert shrub species in glasshouse experiments where frequent watering assured homogeneity in soil Ψw and soil-root hydraulic continuity and where NaCl controlled soil Ψw. Plant water potentials were measured with a pressure chamber (xylem Ψp) and thermocouple psychrometers (leaf Ψw). Soil Ψw was measured with in situ thermocouple psychrometers. Predawn leaf Ψw and xylem Ψp were significantly more negative than soil Ψw, for many treatments, indicating large predawn soil-plant Ψw disequilibria: up to 1.2 MPa for Chrysothamnus nauseosus (0 and 100 mm NaCl) and 1.8 MPa for Sarcobatus vermiculatus (0, 100, 300, and 600 mm NaCl). Significant nighttime canopy water loss was one mechanism contributing to predawn disequilibrium, assessed by comparison of xylem Ψp for bagged (to minimize transpiration) and unbagged canopies, and by gas exchange measurements. However, nighttime transpiration accounted for only part of the predawn disequilibrium. Other mechanisms that could act with nighttime transpiration to generate large predawn disequilibria are described and include a model of how leaf apoplastic solutes could contribute to the phenomenon. This study is among the first to conclusively document such large departures from the expectation of predawn soil-plant equilibrium for C3 shrubs, and provides a general framework for considering relative contributions of nighttime transpiration and other plant-related mechanisms to predawn disequilibrium. Received: 12 November 1998 / Accepted: 5 May 1999  相似文献   

20.
To develop a microbial treatment of edible oil-contaminated wastewater, microorganisms capable of rapidly degrading edible oil were screened. The screening study yielded a yeast coculture comprising Rhodotorula pacifica strain ST3411 and Cryptococcus laurentii strain ST3412. The coculture was able to degrade efficiently even at low contents of nitrogen ([NH4–N] = 240 mg/L) and phosphorus sources ([PO4–P] = 90 mg/L). The 24-h degradation rate of 3,000 ppm mixed oils (salad oil/lard/beef tallow, 1:1 w/w) at 20°C was 39.8% ± 9.9% (means ± standard deviations of eight replicates). The highest degradation rate was observed at 20°C and pH 8. In a scaled-up experiment, the salad oil was rapidly degraded by the coculture from 671 ± 52.0 to 143 ± 96.7 ppm in 24 h, and the degradation rate was 79.4% ± 13.8% (means ± standard deviations of three replicates). In addition, a repetitive degradation was observed with the cell growth by only pH adjustment without addition of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号