首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stripe rust is one of the most destructive diseases of wheat. Breeding for resistance is the most economical and environmentally acceptable means to control stripe rust. Genetic studies on resistance sources are very important. Previous inheritance studies on Triticum aestivum subsp. spelta cv. album and wheat cultivar Lee showed that each possessed a single dominant gene for stripe rust resistance, i.e., Yr5 and Yr7, respectively. Both were located on the long arm of chromosome 2B, but due to the complexities caused by genetic background effects there was no clear evidence on the allelism or linkage status of these genes. Our study, involving an intercross of Avocet S near-isogenic lines possessing the genes, provided clear evidence for allelism or extremely close linkage of Yr5 and Yr7 based on phenotypic and molecular studies.  相似文献   

2.
An incompletely dominant gene conferring resistance to Puccinia hordei, Rph14, identified previously in an accession of Hordeum vulgare, confers resistance to all known pathotypes of P. hordei in Australia. Knowledge of the chromosomal location of Rph14 and the identification of DNA markers closely linked to it will facilitate combining it with other important leaf rust resistance genes to achieve long lasting resistance. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks using DArT markers located Rph14 to the short arm of chromosome 2H. DArT marker bPb-1664 was identified as having the closest genetic association with Rph14. PCR based marker analysis identified a single SSR marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cm in the ‘Baudin’/‘PI 584760’and ‘Ricardo’/‘PI 584760’ populations, respectively.  相似文献   

3.
Two Iranian common wheat landraces AUS28183 and AUS28187 from the Watkins collection showed high levels of seedling resistance against Australian pathotypes of leaf rust and stripe rust pathogens. Chi-squared analyses of rust response segregation among F3 populations derived from crosses of AUS28183 and AUS28187 with a susceptible genotype AUS27229 revealed monogenic inheritance of leaf rust and stripe rust resistance. As both genotypes produced similar leaf rust and stripe rust infection types, they were assumed to carry the same genes. The genes were temporarily named as LrW1 and YrW1. Molecular mapping placed LrW1 and YrW1 in the short arm of chromosome 5B, about 10 and 15 cM proximal to the SSR marker gwm234, respectively, and the marker cfb309 mapped 8–12 cM proximal to YrW1. LrW1 mapped 3–6 cM distal to YrW1 in two F3 populations. AUS28183 corresponded to the accession V336 of the Watkins collection which was the original source of Lr52. Based on the genomic location and accession records, LrW1 was concluded to be Lr52. Because no other seedling stripe rust resistance gene has previously been mapped in chromosome 5BS, YrW1 was permanently named as Yr47. A combination of flanking markers gwm234 and cfb309 with phenotypic assays could be used to ascertain the presence of Lr52 and Yr47 in segregating populations. This investigation characterised a valuable source of dual leaf rust and stripe rust resistance for deployment in new wheat cultivars. Transfer of Lr52 and Yr47 into current Australian wheat backgrounds is in progress.  相似文献   

4.
The common wheat genotype ‘RL6077’ was believed to carry the gene Lr34/Yr18 that confers slow-rusting adult plant resistance (APR) to leaf rust and stripe rust but located to a different chromosome through inter-chromosomal reciprocal translocation. However, haplotyping using the cloned Lr34/Yr18 diagnostic marker and the complete sequencing of the gene indicated Lr34/Yr18 is absent in RL6077. We crossed RL6077 with the susceptible parent ‘Avocet’ and developed F3, F4 and F6 populations from photoperiod-insensitive F3 lines that were segregating for resistance to leaf rust and stripe rust. The populations were characterized for leaf rust resistance at two Mexican sites, Cd. Obregon during the 2008–2009 and 2009–2010 crop seasons, and El Batan during 2009, and for stripe rust resistance at Toluca, a third Mexican site, during 2009. The F3 population was also evaluated for stripe rust resistance at Cobbitty, Australia, during 2009. Most lines had correlated responses to leaf rust and stripe rust, indicating that either the same gene, or closely linked genes, confers resistance to both diseases. Molecular mapping using microsatellites led to the identification of five markers (Xgwm165, Xgwm192, Xcfd71, Xbarc98 and Xcfd23) on chromosome 4DL that are associated with this gene(s), with the closest markers being located at 0.4 cM. In a parallel study in Canada using a Thatcher × RL6077 F3 population, the same leaf rust resistance gene was designated as Lr67 and mapped to the same chromosomal region. The pleiotropic, or closely linked, gene derived from RL6077 that conferred stripe rust resistance in this study was designated as Yr46. The slow-rusting gene(s) Lr67/Yr46 can be utilized in combination with other slow-rusting genes to develop high levels of durable APR to leaf rust and stripe rust in wheat.  相似文献   

5.
Resistance to Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe in wheat (Triticum aestivum L.) was identified in disomic chromosome substitution and translocation lines, into which chromosome 7el2 had been introgressed from wheatgrass, Thinopyrum ponticum. In this study, two chromosome substitution lines with different origins (designated as el1 and el2) and with different reactions to infection by F. graminearum were crossed to develop a segregating mapping population. The objectives of this study were to determine the effectiveness of this type II resistance and map it on chromosome 7el2. Type II resistance to FHB was characterized in the F2, F2:3 families, F4:5 plants and F5:6 recombinant inbred lines developed by single-seed descent; and the population was characterized in the F2 and F5 with DNA markers along the long arm of 7el. Composite interval mapping revealed a FHB resistance QTL, designated Qfhs.pur-7EL, located in the distal region of the long arm of 7el2 and delimited with flanking markers XBE445653 and Xcfa2240. Additive effects of Qfhs.pur-7EL reduced the number of diseased spikelets per spike following inoculation of one floret in four experiments by 1.5–2.6 and explained 15.1–32.5% of the phenotypic variation in the populations. Several STS-derived and EST-derived PCR or CAPS markers were developed in this chromosomal region, and showed the specificity of 7el2 compared to an array of wheat lines possessing other sources of FHB resistance. These markers are useful in an effort to shorten the chromosome segment of 7el2 and to use for marker-assisted introgression of this resistance into wheat.  相似文献   

6.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

7.
Fusarium head blight (FHB) is an important disease of wheat worldwide. The cultivar Spark is more resistant than most other UK winter wheat varieties but the genetic basis for this is not known. A mapping population from a cross between Spark and the FHB susceptible variety Rialto was used to identify quantitative trait loci (QTL) associated with resistance. QTL analysis across environments revealed nine QTL for FHB resistance and four QTL for plant height (PH). One FHB QTL was coincident with the Rht-1D locus and accounted for up to 51% of the phenotypic variance. The enhanced FHB susceptibility associated with Rht-D1b is not an effect of PH per se as other QTL for height segregating in this population have no influence on susceptibility. Experiments with near-isogenic lines supported the association between susceptibility and the Rht-D1b allele conferring the semi-dwarf habit. Our results demonstrate that lines carrying the Rht-1Db semi-dwarfing allele are compromised in resistance to initial infection (type I resistance) while being unaffected in resistance to spread within the spike (type II resistance).  相似文献   

8.
9.

Key message

The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes.

Abstract

A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar ‘Emir’. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar ‘Emir’ to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
  相似文献   

10.
To understand the molecular basis of broad-spectrum resistance to rice blast, fine-scale mapping of the two blast resistance (R) genes, Pi9( t) and Pi2( t), was conducted. These two genes were introgressed from different resistance donors, previously reported to confer resistance to many blast isolates in the Philippines, and were mapped to an approximately 10-cM interval on chromosome 6. To further test their resistance spectrum, 43 blast isolates collected from 13 countries were used to inoculate the Pi2( t) and Pi9( t) plants. Pi9( t)-bearing lines were highly resistant to all isolates tested, and lines carrying Pi2( t) were resistant to 36 isolates, confirming the broad-spectrum resistance of these two genes to diverse blast isolates. Three RAPD markers tightly linked to Pi9( t) were identified using the bulk segregant analysis technique. Twelve positive bacterial artificial chromosome (BAC) clones were identified and a BAC contig covering about 100 kb was constructed when the Pi9( t) BAC library was screened with one of the markers. A high-resolution map of Pi9( t) was constructed using BAC ends. The Pi2( t) gene was tightly linked to all of the Pi9( t) markers in 450 F(2) plants. These data suggest that Pi9( t) and Pi2( t) are either allelic or tightly linked in an approximately 100-kb region. The mapping results for Pi9( t) and Pi2( t) provide essential information for the positional cloning of these two important blast resistance genes in rice.  相似文献   

11.
Aegilops tauschii (goat grass) is the progenitor of the D genome in hexaploid bread wheat. We have screened more than 200 Ae. tauschii accessions for resistance against leaf rust (Puccinia triticina) isolates, which are avirulent on the leaf rust resistance gene Lr1. Approximately 3.5% of the Ae. tauschii accessions displayed the same low infection type as the tester line Thatcher Lr1. The accession Tr.t. 213, which showed resistance after artificial infection with Lr1 isolates both in Mexico and in Switzerland, was chosen for further analysis. Genetic analysis showed that the resistance in this accession is controlled by a single dominant gene, which mapped at the same chromosomal position as Lr1 in wheat. It was delimited in a 1.3-cM region between the restriction fragment length polymorphism (RFLP) markers ABC718 and PSR567 on chromosome 5DL of Ae. tauschii. The gene was more tightly linked to PSR567 (0.47 cM) than to ABC718 (0.79 cM). These results indicate that the resistance gene in Ae. tauschii accession Tr.t. 213 is an ortholog of the leaf rust resistance gene Lr1 of bread wheat, suggesting that Lr1 originally evolved in diploid goat grass and was introgressed into the wheat D genome during or after domestication of hexaploid wheat. Compared to hexaploid wheat, higher marker polymorphism and recombination frequencies were observed in the region of the Lr1 ortholog in Ae. tauschii. The identification of Lr1Ae, the orthologous gene of wheat Lr1, in Ae. tauschii will allow map-based cloning of Lr1 from this genetically simpler, diploid genome.Hong-Qing Ling and Jiwen Qiu have contributed equally to this work  相似文献   

12.
The diversity of the antibody response is achieved, in part, by rearrangement of different immunoglobulin (Ig) genes. The Ig heavy chain is made up of a variable region (IGHV), a diversity region (IGHD) and a joining region (IGHJ). Human germline IGHV genes have been grouped into seven multigene subgroups. Size and usage of these subgroups is not equal, the IGHV3 subgroup is the most commonly used (36%), followed by IGHV1/7 (26%), then IGHV4, IGHV5, IGHV2, IGHV6 (15%, 12%, 4%, 3% respectively). The rhesus macaque (Macaca mulatta) is a useful non-human primate model for studies of infection and the database of germline Ig genes for the macaque is gradually growing to become a useful tool in the study of B-cell responses. The proportions of IGHV subgroup usage in the macaque are similar to those in man. Representatives from IGHV3 and IGHV4 subgroups for the macaque have been published, as have germline sequences of the IGHD and IGHJ genes. However, to date there have been no sequences published from the second largest IGHV subgroup, IGHV1. We report the isolation and sequencing of a genomic fragment containing an IGHV1 gene from the macaque. Polymerase chain reaction (PCR) primers designed from this sequence enabled us to amplify and sequence 25 new IGHV1 germline genes. We also isolated two IGHV7 genes, using the same primers, and two IGHV5 genes, using human IGHV5 primers.  相似文献   

13.
The Rvi15 (Vr2) apple scab resistance locus found in the GMAL 2473 accession has been previously mapped to the top of the Linkage Group 2 (LG2) by analyzing 89 progeny plants of a cross between ‘Idared’ and GMAL 2473. A new population of 989 progeny plants, derived from a cross between ‘Golden Delicious’ and GMAL 2473, has been analyzed with the two SSR markers CH02c02a and CH02f06, previously found to be associated with Rvi15 (Vr2), and with two published markers derived from NBS sequences (ARGH17 and ARGH37) estimated to map close to the Rvi15 (Vr2) locus. ARGH17 and ARGH37, were found to be the closest markers to the resistance locus, bracketing it within an interval of 1.5 cM. The SSRs mapped one on each side of Rvi15 (Vr2). CH02f06 mapped at 2.9 cM from ARGH37 while CH02a02a mapped at 1.7 from ARGH17. The position of Rvi15 (Vr2) respect to CH02a02a indicates that Rvi15 (Vr2) and Rvi4 (Vh4), a second apple scab gene mapped on the top of LG2, are two different resistance genes. In order to develop even more tightly linked markers to Rvi15 (Vr2), ARGH17 was used as the starting point for chromosome walking through the Rvi15 (Vr2) homolog region of the cv. ‘Florina’. A single ‘Florina’ BAC clone, 36I17, was sufficient to span the homologous locus in the new population’s recombinant progeny. Sequencing of the 36I17 BAC clone allowed identifying seven putative ORFs, including two showing a TIR-NBS-LRR structure. Ten additional markers could be developed mapping within a 1.8 cM interval around the Rvi15 (Vr2) resistance gene. ARGH17 and GmTNL1 markers, the latter also derived from NBS-LRR resistance gene homolog sequence, are the closest markers to Rvi15 (Vr2) bracketing it within a 0.5 cM interval. The availability of 12 markers within the Rvi15 (Vr2) region, all within a small physical distance (kbp) in ‘Florina’, suggests that cloning of the Rvi15 (Vr2) apple scab resistance gene from GMAL 2473 will be possible.  相似文献   

14.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

15.
16.
17.
Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating disease of rice (Oryza sativa L). Rice lines that carry resistance (R) gene Xa10 confer race-specific resistance to Xoo strains harboring avirulence (Avr) gene avrXa10. Here we report on genetic study, disease evaluation and fine genetic mapping of the Xa10 gene. The inheritance of Xa10-mediated resistance to PXO99A(pHM1avrXa10) did not follow typical Mendelian inheritance for single dominant gene in F2 population derived from IR24 × IRBB10. A locus might be present in IRBB10 that caused distorted segregation in F2 population. To eliminate this locus, an F3 population (F3-65) was identified, which showed normal Mendelian segregation ratio of 3:1 for resistance and susceptibility. A new near-isogenic line (F3-65-1743) of Xa10 in IR24 genetic background was developed and designated as IRBB10A. IRBB10A retained similar resistance specificity as that of IRBB10 and provided complete resistance to PXO99A(pHM1avrXa10) from seedling to adult stages. Linkage analysis using existing RFLP markers and F2 mapping population mapped the Xa10 locus to the proximal side of E1981S with genetic distance at 0.93 cM. With five new RFLP markers developed from the genomic sequence of Nipponbare, Xa10 was finely mapped at genetic distance of 0.28 cM between proximal marker M491 and distal marker M419 and co-segregated with markers S723 and M604. The physical distance between M491 and M419 on Nipponbare genome is 74 kb. Seven genes have been annotated from this 74-kb region and six of them are possible Xa10 candidates. The results of this study will be useful in Xa10 cloning and marker-assisted breeding.  相似文献   

18.

Background

The re-sequencing of C. angulata has revealed many polymorphisms in candidate genes related to adaptation to abiotic stress that are not present in C. gigas; these genes, therefore, are probably related to the ability of this oyster to retain high concentrations of toxic heavy metals. There is, in addition, an unresolved controversy as to whether or not C. angulata and C. gigas are the same species or subspecies. Both oysters have 20 metacentric chromosomes of similar size that are morphologically indistinguishable. From a genomic perspective, as a result of the great variation and selection for heterozygotes in C. gigas, the assembly of its draft genome was difficult: it is fragmented in more than seven thousand scaffolds.

Results

In this work sixty BAC sequences of C. gigas downloaded from NCBI were assembled in BAC-contigs and assigned to BACs that were used as probes for mFISH in C. angulata and C. gigas. In addition, probes of H3, H4 histone, 18S and 5S rDNA genes were also used. Hence we obtained markers identifying 8 out the 10 chromosomes constituting the karyotype. Chromosomes 1 and 9 can be distinguished morphologically. The bioinformatic analysis carried out with the BAC-contigs annotated 88 genes. As a result, genes associated with abiotic adaptation, such as metallothioneins, have been positioned in the genome. The gene ontology analysis has also shown many molecular functions related to metal ion binding, a phenomenon associated with detoxification processes that are characteristic in oysters. Hence the provisional integrated map obtained in this study is a useful complementary tool for the study of oyster genomes.

Conclusions

In this study 8 out of 10 chromosome pairs of Crassostrea angulata/gigas were identified using BAC clones as probes. As a result all chromosomes can now be distinguished. Moreover, FISH showed that H3 and H4 co-localized in two pairs of chromosomes different that those previously escribed. 88 genes were annotated in the BAC-contigs most of them related with Molecular Functions of protein binding, related to the resistance of the species to abiotic stress. An integrated genetic map anchored to the genome has been obtained in which the BAC-contigs structure were not concordant with the gene structure of the C. gigas scaffolds displayed in the Genomicus database.
  相似文献   

19.
20.

Key message

Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.

Abstract

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号