首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited in the presence of 1,10-phenanthroline. 2. A conformational change in the enzyme's structure is induced by 1,10-phenanthroline, and is abolished in the presence of NADH. 1,10-Phenanthroline binds to the enzyme competitively with respect to NADH, with a stoicheiometry of 2 mol of 1,10-phenanthroline/144000g of enzyme. 3. 1,10-Phenanthroline induces a time-dependent dissociation of Zn2+ from the enzyme, which is in correlation with its inhibitions. 4. Spectrophotometric measurement indicates that the dissociation of half (2 zinc atoms/tetramer) of the total zinc content of the enzyme correlates with the full inhibition of its activity. Measurement of the tightly bound Zn2+ by atomic absorption photometry confirms this. 5. A proposition is advanced that the tetrameric molecule of yeast alcohol dehydrogenase possesses an inherent asymmetry, with four monomeric subunits being arranged in two mutually symmetrical pairs.  相似文献   

2.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a highly complicated, membrane-bound enzyme. It is central to energy transduction, an important source of cellular reactive oxygen species, and its dysfunction is implicated in neurodegenerative and muscular diseases and in aging. Here, we describe the effects of Zn2+ on complex I to define whether complex I may contribute to mediating the pathological effects of zinc in states such as ischemia and to determine how Zn2+ can be used to probe the mechanism of complex I. Zn2+ inhibits complex I more strongly than Mg2+, Ca2+, Ba2+, and Mn2+ to Cu2+ or Cd2+. It does not inhibit NADH oxidation or intramolecular electron transfer, so it probably inhibits either proton transfer to bound quinone or proton translocation. Thus, zinc represents a new class of complex I inhibitor clearly distinct from the many ubiquinone site inhibitors. No evidence for increased superoxide production by zinc-inhibited complex I was detected. Zinc binding to complex I is mechanistically complicated. During catalysis, zinc binds slowly and progressively, but it binds rapidly and tightly to the resting state(s) of the enzyme. Reactivation of the inhibited enzyme upon the addition of EDTA is slow, and inhibition is only partially reversible. The IC50 value for the Zn2+ inhibition of complex I is high (10-50 microm, depending on the enzyme state); therefore, complex I is unlikely to be a major site for zinc inhibition of the electron transport chain. However, the slow response of complex I to a change in Zn2+ concentration may enhance any physiological consequences.  相似文献   

3.
D-Lactate dehydrogenase of Peptostreptococcus elsdenii.   总被引:6,自引:3,他引:3       下载免费PDF全文
D-Lactate dehydrogenase has been purified to near homogeneity from Peptostreptococcus elsdenii. As isolated, the enzyme contains flavine adenine dinucleotide and a tightly bound metal cofactor. Inactivation by ortho-phenanthroline occurs in two steps and is partially blocked by D-lactate. Reactivation by divalent metal ions occurs, with divalent zinc being the most effective. When ferricyanide is used as the electron acceptor, D-lactate has an apparent K0.5 of 3.3 M0.46; its binding is negatively cooperative with a Hill coefficient of 0.46. Replacement of ferricyanide by the other components of the electron transport system yields hyperbolic kinetics with an apparent Km for D-lactate of 26 mM. The apparent Km for ferricyanide is 2.2 X 10(-4) M. Phosphate and pyrophosphate compounds stimulate the D-lactate:ferricyanide activity. These properties suggest that interaction of this enzyme with other electron transport proteins in the chain may enhance D-lactate binding and, hence, the rate of electron transport.  相似文献   

4.
Arginase from Saccharomyces cerevisiae has long been known to be a metal ion-requiring enzyme as it requires heating at 45 degrees C in the presence of 10 mM Mn2+ for catalytic activation. Metals are also thought to play a structural role in the enzyme, but the identity of the structural metal and its precise structural role have not been defined. Analysis of the metal ions that bind to yeast arginase by atomic absorption spectroscopy reveals that there is a weakly associated Mn2+ that binds to the trimeric enzyme with a stoichiometry of 1.04 +/- 0.05 mol of Mn2+ bound per subunit and an apparent K'D value of 26 microM at pH 7.0 and 4 degrees C. A more tightly associated Zn2+ ion can only be removed by dialysis against chelating agents. In occasional preparations, this site contained some Mn2+; however, Zn2+ and Mn2+ together bind to high affinity sites with a stoichiometry of 1.14 +/- 0.25/mol of subunit. Both the loosely associated catalytic Mn2+ ion and the more tightly associated structural Zn2+ ion confer stability to the enzyme. Removal of the weakly bound Mn2+ ion results in a 3 degree C decrease in the midpoint of the thermal transition (T 1/2) (from 57 by 54 degrees C) as monitored by UV difference absorption spectroscopy. Removal of the tightly bound Zn2+ ion produces a 19 degrees C decrease in T 1/2 (to 38 degrees C). Similar results are obtained by circular dichroism measurements. When the Zn2+ ion is removed, the steady-state fluorescence intensity increases 100% as compared to the holoenzyme, with a shift in the emission maximum from 337 to 352 nm. This suggests that in the folded trimeric metalloenzyme, the tryptophan fluorescence is quenched and that upon removal of the structural metal, the quenching is relieved as tryptophan residues become exposed to more polar environments. Equilibrium sedimentation experiments performed after dialysis of the enzyme against EDTA demonstrate that arginase exists in a reversible monomer-trimer equilibrium, in the absence of metal ions, with a KD value of 5.05 x 10(-11) M2. In contrast, the native enzyme exists as a trimer with no evidence of dissociation when Mn2+ and Zn2+ are present (Eisenstein, E., Duong, L.T., Ornberg, R. L., Osborne, J.C., Jr., and Hensley, P. (1986) J. Biol. Chem. 261, 12814-12819). In summary, the study presented here demonstrates that binding of a weakly bound Mn2+ ion confers catalytic activity. In contrast, binding of a more tightly associated Zn2+ ion confers substantial stability to the tertiary and quaternary structure of the enzyme.  相似文献   

5.
The divalent metal requirement of intrinsic phosphatase activity was investigated using native and trypsinized calcineurin. This was assessed by examining (1) the stimulation of the enzyme by various metals, (2) the inhibition of the enzyme activity by metal chelators (EDTA and EGTA), and (3) the restoration by various metals of the activity of the EDTA-inhibited calcineurin phosphatase. The results supported the view that a tightly bound trace metal is necessary for expression of the phosphatase activity of calcineurin and implicate Mn2+ as the tightly bound metal.  相似文献   

6.
1. Inhibition of collagenase from rabbit bone cultures by the chelating agents 1,10-phenanthroline and EDTA is almost completely reversed by Zn2+; other metal cations are less effective in reversing the inhibition. Optimal restoration of activity is achieved at Zn2+ concentrations below that of the chelator, but excess of Zn2+ is inhibitory. 2. Prolonged incubation of collagenase with either chelator causes irreversible inactivation. This inactivation is prevented by Zn2+ at the same concentrations needed to reverse the primary inhibition. 3. Collagenase incorporates 65Zn by exchange when incubated with 1,10-phenanthroline and Zn2+ containing this radioactive isotope. The 65Zn2+ can be removed from its binding site in collagenase by 1,10-phenanthroline or EDTA. Irreversible inactivation of collagenase by chelators destroys its ability to incorporate 65Zn2+. 4. Latent collagenase, the inhibited form in which collagenase first appears in culture, behaves similarly to the active enzyme in 65Zn2+-exchange experiments, but is resistant to irreversible inactivation by chelators. 5. It is concluded that collagenase is a zinc metalloenzyme that forms an inactive and unstable apoenzyme on treatment with chelators. The bound inhibitor component of latent collagenase evidently stabilizes the apoenzyme.  相似文献   

7.
The zinc ion in bovine heart cytochrome c oxidase can be completely depleted from the enzyme with mercuric chloride without denaturing the protein. The metal atom stoichiometry of 5Cu/4Fe/0Zn/2Mg obtained for the enzyme following HgCl2 treatment indicates that this depletion is highly selective. Zinc depletion exposes one cysteine on subunit VIa and one cysteine on subunit VIb for N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-diamine (1,5-I-AEDANS) labelling, suggesting that the zinc plays a structural role in the protein by providing a bridge between these two subunits. Although the treatment of cytochrome c oxidase with mercuric chloride inhibits the steady-state activity of the enzyme, subsequent removal of the Hg2+ bound to cysteine residues by 1,5-I-AEDANS significantly reverses the inhibition. This latter result indicates that the removal of the zinc itself does not alter the steady-state activity of the enzyme.  相似文献   

8.
Studies on the interaction of calcineurin with its activator, calmodulin, showed that the 1:1 complex is the activated species. Concomitant with activation, a time-dependent deactivation of the phosphatase was observed. The process followed first order kinetics and was dependent on the presence of both Ca2+ and calmodulin. The deactivation rate constant at pH 7.6 and 30 degrees C was 0.06 min-1, which was increased by the substrate, p-nitrophenylphosphate (Km = 11 mM), to 0.47 min-1. PPi and nucleotides inhibited the enzyme competitively and accelerated the deactivation. The first order rate constant was increased to 2.3 min-1 by PPi (Ki = 55 microM) and to 8.0 min-1 by ADP (Ki = 0.94 mM). A theory dealing with the deactivation (applicable to chemical modification, etc.) of an enzyme in the absence and presence of various ligands is presented. The deactivated enzyme remained bound to calmodulin and was not reactivated by dissociation-reassociation of the calcineurin-calmodulin complex. Calcineurin was found to contain covalently bound phosphate; however, no difference in its content was detected upon deactivation, indicating that self-dephosphorylation was not involved. The deactivation could be reversed, as well as prevented, by divalent metal ions such as Ni2+ and Mn2+. Atomic absorption spectroscopy revealed nearly stoichiometric amounts of tightly bound Fe and Zn (but little other ions) on purified calcineurin, which remained bound during the calmodulin-dependent deactivation; removal of tightly bound metals is, therefore, not the cause of deactivation. Our results indicate that calcineurin is a metallophosphatase and not simply a Ca2+- and calmodulin-stimulated enzyme. In addition to the nondissociable Zn and Fe and the Ca2+ bound to the B subunit and calmodulin, the enzyme requires a divalent metal ion for structural stability and full activity.  相似文献   

9.
The relative activity of a zinc-containing cyclic AMP phosphodiesterase towards the (Sp)- compared with the (Rp)-diastereoisomer of cyclic adensine phosphorothioate varied with the identity of the free bivalent metal ion from more than 35 to 0.074 along the series Mg2+ greater than Mn2+ greater than Co2+ greater than Zn2+ greater than Cd2+, showing that this ion, and not the tightly bound zinc, bonds to the phosphorothioate moiety of the substrate.  相似文献   

10.
We describe two uncommon roles for Zn2+ in enzyme KpnI restriction endonuclease (REase). Among all of the REases studied, KpnI REase is unique in its DNA binding and cleavage characteristics. The enzyme is a poor discriminator of DNA sequences, cleaving DNA in a promiscuous manner in the presence of Mg2+. Unlike most Type II REases, the active site of the enzyme comprises an HNH motif, which can accommodate Mg2+, Mn2+, or Ca2+. Among these metal ions, Mg2+ and Mn2+ induce promiscuous cleavage by the enzyme, whereas Ca2+-bound enzyme exhibits site-specific cleavage. Examination of the sequence of the protein revealed the presence of a zinc finger CCCH motif rarely found in proteins of prokaryotic origin. The zinc binding motif tightly coordinates zinc to provide a rigid structural framework for the enzyme needed for its function. In addition to this structural scaffold, another atom of zinc binds to the active site to induce high fidelity cleavage and suppress the Mg2+- and Mn2+-mediated promiscuous behavior of the enzyme. This is the first demonstration of distinct structural and catalytic roles for zinc in an enzyme, suggesting the distinct origin of KpnI REase.  相似文献   

11.
The photoreceptor cGMP phosphodiesterase (PDE6) plays a key role in vertebrate vision, but its enzymatic mechanism and the roles of metal ion co-factors have yet to be determined. We have determined the amount of endogenous Zn(2+) in rod PDE6 and established a requirement for tightly bound Zn(2+) in catalysis. Purified PDE6 contained 3-4-g atoms of zinc/mole, consistent with an initial content of two tightly bound Zn(2+)/catalytic subunit. PDE with only tightly bound Zn(2+) and no free metal ions was inactive, but activity was fully restored by Mg(2+), Mn(2+), Co(2+), or Zn(2+). Mn(2+), Co(2+), and Zn(2+) also induced aggregation and inactivation at higher concentrations and longer times. Removal of 93% of the tightly bound Zn(2+) by treatment with dipicolinic acid and EDTA at pH 6.0 resulted in almost complete loss of activity in the presence of Mg(2+). This activity loss was blocked almost completely by Zn(2+), less potently by Co(2+) and almost not at all by Mg(2+), Mn(2+), or Cu(2+). The lost activity was restored by the addition of Zn(2+), but Co(2+) restored only 13% as much activity, and other metals even less. Thus tightly bound Zn(2+) is required for catalysis but could also play a role in stabilizing the structure of PDE6, whereas distinct sites where Zn(2+) is rapidly exchanged are likely occupied by Mg(2+) under physiological conditions.  相似文献   

12.
For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+.  相似文献   

13.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

14.
Heavy metal pollution can arise from many sources and damage many organisms. Exposure to the metal ions can leads to a reduction in cellular antioxidant enzyme activities and lowers cellular defense against oxidative stress. In this study we have tested effects of the some metal ions on the purified bovine kidney cortex glutathione reductase (GR). Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effect on the enzyme. The obtained IC?? values of Cd2+, Ni2+, and Zn2+ are 0.027, 0.8, and 1 mM, respectively. Kinetic characterization of the inhibition is also investigated. Cd2+ inhibition is noncompetitive with respect to both oxidized glutathione (GSSG) (Ki(GSSG) 0.060 ± 0.005 mM) and NADPH (Ki(NADPH) 0.025 ± 0.002 mM). Ni2+ inhibition is noncompetitive with respect to GSSG (Ki(GSSG) 0.329 ± 0.016 mM) and uncompetitive with respect to NADPH (Ki(NADPH) 0.712 ± 0.047 mM). The effect of Zn2+ on GR activity is consistent with noncompetitive inhibition pattern when the varied substrate is the GSSG (Ki(GSSG) 0.091 ± 0.005 mM) and the NADPH (Ki(NADPH) 0.226 ± 0.01 mM), respectively. GR inhibition studies may be useful for understanding the mechanisms for oxidative damage associated with heavy metal toxicity.  相似文献   

15.
Mutagenesis of H-68 or -148 in Clostridium perfringens alpha-toxin resulted in complete loss of hemolytic, phospholipase C, sphingomyelinase, and lethal activities of the toxin. These activities of the variant toxin at H-126 or -136 decreased by approximately 100-fold of the activities of the wild-type toxin. Mutation at H-46, -207, -212, or -241 showed no effect on the biological activities, indicating that these residues are not essential for these activities. The variant toxin at H-11 was not detected in culture supernatant and in cells of the transformant carrying the variant toxin gene. Wild-type toxin and the variant toxin at H-148 bound to erythrocytes in the presence of Ca2+; however, the variant toxins at H-68, -126, and -136 did not. Co2+ and Mn2+ ions stimulated binding of the variant toxin at H-68, -126, and -136 to membranes in the presence of Ca2+ and caused an increase in hemolytic activity. Wild-type toxin and the variant toxins at H-68, -126, and -136 contained two zinc atoms in the molecule. Wild-type toxin inactivated by EDTA contained two zinc atoms. These results suggest that wild-type toxin contains two tightly bound zinc atoms which are not coordinated to H-68, -126, and -136. The variant toxin at H-148 possessed only one zinc atom. Wild-type toxin and the variant toxin at H-148 showed [65Zn]2+ binding, but the variant toxins at H-68, -126, and -136 did not. Furthermore, [65Zn]2+ binding to wild-type toxin was competitively inhibited by unlabeled Zn2+, Co2+, and Mn2+. These results suggest that H-68, -126, and -136 residues bind an exchangeable and labile metal which is important for binding to membranes and that H-148 tightly binds one zinc atom which is essential for the active site of alpha-toxin.  相似文献   

16.
1. Two methods were used to obtain alpha-mannosidase free from unbound Zn2+, (a) by removal of excess of metal ion from preparations purified in the presence of Zn2+ and (b) by purification under conditions that eliminate the need to add Zn2+. 2. The purified enzyme is homogeneous on ultracentrifugation, polyacrylamide-gel electrophoresis and gel chromatography. 3. The molecular weight is estimated to be 230 000. 4. The enzyme contains between 470 and 565 mug of zinc/g of protein, corresponding to between 1.7 and 2 atoms of zinc/enzyme molecule. The contents of other metals are much lower. 5. The enzyme is inactivated by chelating agents and activity is restored by Zn2+. 6. No other metal ion was found to replace Zn2+ with retention of activity. Some bivalent metal ions, e.g. Cu2+, rapidly inactivate the enzyme. 7. The results indicate that jack-bean alpha-mannosidase exists naturally as a zinc-protein complex and may be considered as a metalloenzyme.  相似文献   

17.
Beef liver dihydropyrimidine amidohydrolase has been purified to homogeneity using both an electrophoretic and a hydrophobic chromatographic method. The enzyme is a tetramer with a molecular weight of 226,000 g mol-1, a subunit molecular weight of 56,500 g mol-1, and contains 4 mol of tightly bound (Ks greater than or equal to 1.33 X 10(9) M-1) Zn2+ per mole of active enzyme. The enzyme appears to be a true Zn2+ metalloenzyme because there exists a direct proportionality between enrichment of Zn2+ and active enzyme during purification, there is an almost quantitative relationship between the loss of both enzyme activity and Zn2+ during 8-hydroxyquinoline-5-sulfonic acid treatment to form apoenzyme, Zn2+ and Co2+ reactivate dipicolinic acid-inhibited enzyme, and saturating concentrations of a substrate, dihydrothymine, protect against 8-hydroxyquinoline-5-sulfonic acid inhibition. EDTA does not inhibit the enzyme; however, 8-hydroxyquinoline-5-sulfonic acid, o-phenanthroline, and 2,6-dipicolinic acid cause a time-dependent loss in activity which follows pseudo-first-order kinetics. Analysis of the resulting kinetic data for these three chelators indicates that the reaction pathway involves the formation of an enzyme-Zn2+-chelator ternary complex which then dissociates to form apoenzyme and a Zn2+-chelator complex. Like other Zn2+ metalloenzymes, the enzyme is inhibited by a number of substituted sulfonamides. In the case of p-nitrobenzenesulfonamide, this inhibition is competitive in nature. Using the purified enzyme, kinetic constants were determined for a variety of dihydropyrimidines, ureidocarboxylic acids, and hydantoin substrates. Normal hyperbolic kinetics were observed for the hydrolysis of the cyclic compounds, but the cyclization of the ureidoacids showed biphasic kinetics and different values of Km can be estimated at either high or low concentrations of these substrates.  相似文献   

18.
We have obtained 53 mg of 99% pure dihydroorotase from 10.9 g of frozen Escherichia coli pyrC plasmid-containing E. coli cells using a 4-step 16-fold purification procedure, a yield of 60%. We characterize the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (a dimer of subunit molecular weight 38,300 +/- 2,900), high performance liquid chromatography gel sieving, amino acid analysis, amino terminus determination (blocked), and specific activity. The isolated enzyme contains 1 tightly bound essential zinc atom/subunit, and readily but loosely binds 2 additional Zn(II) or Co(II) ions/subunit which modulate catalytic activity; treatment of crude extracts with weak chelators suggests that the enzyme contains 3 zinc atoms/subunit in vivo. Two of the 6 thiol groups/subunit react rapidly with 5,5'-dithiobis(2-nitrobenzoate) when 1 Zn/subunit enzyme is used, but slowly when 3 Zn/subunit enzyme is used. The 2 weakly bound Zn(II) ions/subunit protect against the reversible air oxidation which lowers the specific activity of the enzyme and renders it unreactive with 5,5'-dithiobis(2-nitrobenzoate). The dilution activation observed in the presence of substrate, the dilution inactivation observed in the absence of substrate, and the transient activation by the metal chelator oxalate are interpreted as evidence for an unstable, hyperactive monomer.  相似文献   

19.
Partially purified calf brain uridine kinase precipitated by bivalent metal cations has been compared with the soluble enzyme fraction regarding its stability in the presence of inactivating factors. The freeze-dried preparations of uridine kinase precipitaated by Pb2+ or Zn2+ ions, althouth enzymatically highly active, are insoluble in aqueous solutions. The activity of metal-insolubilized enzymes disappears during their preincubation in acidic media or in the presence of silver ions. Also trypsin, chymotrypsin and cathepsin B1 caused decreases in enzyme activity. However, fractions which have been precipitated by metal ions and freeze-dried are stable at high temperatures, whereas the activity of soluble uridine kinase is completely lost. Both unheated metal-ion precipitated uridine kinase preparations and those heated at 100 degrees C are equally sensitive to the feedback inhibition by CTP.  相似文献   

20.
Type II restriction endonucleases Bam HI and Eco RI were covalently coupled to Sepharose. These insolubilized enzymes generated fragment patterns for several viral DNAs identical to those produced by the respective free enzymes. Conditions for optimal activity were similar for both bound and unbound forms of the enzymes. Insolubilization improved thermal stability of Bam HI and Eco RI. The bound enzyme can be recovered from reaction mixtures and reused several times. Upon storage at 4 degrees C, coupled endonucleases remained stable for several months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号