首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of modification of native cysteines present in squid giant axon Na channels with methanethiosulfonates. We find that intracellular, but not extracellular, perfusion of axons with positively charged [(2-trimethylammonium)-ethyl]methanethiosulfonate (MTSET), or 3(triethylammonium)propyl]methanethiosulfonate (MTS-PTrEA) irreversibly reduces sodium ionic (INa) and gating (Ig) currents. The rate of modification of Na channels was dependent on the concentration of the modifying agent and the transmembrane voltage. Hyperpolarized membrane potentials (e.g., -110 mV) protected the channels from modification by MTS-PTrEA. In addition to reducing the amplitudes of INa and Ig, MTS-PTrEA also altered their kinetics such that the remaining INa did not appear to inactivate, whereas Ig was made sharper and declined to baseline more quickly. The shape and amplitude of Ig after modification of channels with MTS-PTrEA appeared to be "charge-immobilized," as if the modified channels were inactivated. MTS-PTrEA did not affect INa or Ig when inactivation was removed by internal perfusion of the axon with pronase. In addition, we find that the steady-state inactivation curve of modified Na channels is made much shallower and is markedly shifted to hyperpolarized potentials. The rates of activation, deactivation, or open-state inactivation were not altered in MTS-PTrEA-modified channels. The uncharged sulfhydryl reagent methymethanethiosulfonate (MMTS) did not affect either INa or Ig, but prevented the irreversible effects of MTS-PTrEA or MTSET on Na channels. It is proposed that the positively charged methanethiosulfonates MTS-PTrEA and MTSET modify a native internal cysteine(s) in squid Na channels, and by doing so promote inactivation from closed states, resulting in charge immobilization and reduction of INa.  相似文献   

2.
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.  相似文献   

3.
cAMP-activated Na+ current (INa,cAMP) was studied in voltage-clamped neurons of the seaslug Pleurobranchaea californica. The current response to injected cAMP varied in both time course and amplitude as the tip of an intracellular injection electrode was moved from the periphery to the center of the neuron soma. The latency from injection to peak response was dependent on the amount of cAMP injected unless the electrode was centered within the cell. Decay of the INa,cAMP response was slowed by phosphodiesterase inhibition. These observations suggest that the kinetics of the INa,cAMP response are governed by cAMP diffusion and degradation. Phosphodiesterase inhibition induced a persistent inward current. At lower concentrations of inhibitor, INa,cAMP response amplitude increased as expected for decreased hydrolysis rate of injected cAMP. Higher inhibitor concentrations decreased INa,cAMP response amplitude, suggesting that inhibitor-induced increase in native cAMP increased basal INa,cAMP and thus caused partial saturation of the current. The Hill coefficient estimated from the plot of injected cAMP to INa,cAMP response amplitude was close to 1.0. An equation modeling INa,cAMP incorporated terms for diffusion and degradation. In it, the first-order rate constant of phosphodiesterase activity was taken as the rate constant of the exponential decay of the INa,cAMP response. The stoichiometry of INa,cAMP activation was inferred from the Hill coefficient as 1 cAMP/channel. The equation closely fitted the INa,cAMP response and simulated changes in the waveform of the response induced by phosphodiesterase inhibition. With modifications to accommodate asymmetric INa,cAMP activation, the equation also simulated effects of eccentric electrode position. The simple reaction-diffusion model of the kinetics of INa,cAMP may provide a useful conceptual framework within which to investigate the modulation of INa,cAMP by neuromodulators, intracellular regulatory factors, and pharmacological agents.  相似文献   

4.
Study of the excitatory sodium current (INa) intact heart muscle has been hampered by the limitations of voltage clamp methods in multicellular preparations that result from the presence of large series resistance and from extracellular ion accumulation and depletion. To minimize these problems we voltage clamped and internally perfused freshly isolated canine cardiac Purkinje cells using a large bore (25-microns diam) double-barreled flow-through glass suction pipette. Control of [Na+]i was demonstrated by the agreement of measured INa reversal potentials with the predictions of the Nernst relation. Series resistance measured by an independent microelectrode was comparable to values obtained in voltage clamp studies of squid axons (less than 3.0 omega-cm2). The rapid capacity transient decays (tau c less than 15 microseconds) and small deviations of membrane potential (less than 4 mV at peak INa) achieved in these experiments represent good conditions for the study of INa. We studied INa in 26 cells (temperature range 13 degrees-24 degrees C) with 120 or 45 mM [Na+]o and 15 mM [Na+]i. Time to peak INa at 18 degrees C ranged from 1.0 ms (-40 mV) to less than 250 microseconds (+ 40 mV), and INa decayed with a time course best described by two time constants in the voltage range -60 to -10 mV. Normalized peak INa in eight cells at 18 degrees C was 2.0 +/- 0.2 mA/cm2 with [Na+]o 45 mM and 4.1 +/- 0.6 mA/cm2 with [Na+]o 120 mM. These large peak current measurements require a high density of Na+ channels. It is estimated that 67 +/- 6 channels/micron 2 are open at peak INa, and from integrated INa as many as 260 Na+ channels/micron2 are available for opening in canine cardiac Purkinje cells.  相似文献   

5.
Exposure of excitable tissues to hyperbaric environments has been shown to alter membrane ion conductances, but only little is known about the state of the membranes of intact cells in the post-decompression phase following a prolonged high-pressure treatment. Furthermore, almost nothing is known about high-pressure effects on skeletal muscle membranes. Therefore, we investigated changes to the input resistances, membrane potentials and voltage-gated membrane currents for sodium (INa), potassium (IK) and calcium (ICa) ions under voltage-clamp conditions in enzymatically isolated intact mammalian single fibers following a 3-hr high-pressure treatment up to 25 MPa at +4 degrees C. After a 3-hr 20 MPa treatment, the input resistance was increased but declined again for treatments with higher pressures. The resting membrane potentials were depolarized in the post-decompression phase following a 20-MPa high-pressure treatment; this could be explained by an increase in the Na+- over K+-permeability ratio and in intracellular [Na+]i. Following a 10-MPa high-pressure treatment, INa, IK and ICa amplitudes were similar compared to controls but were significantly reduced by 25 to 35% after a 3-hr 20-MPa high-pressure treatment. Interestingly, the voltage-dependent inactivation of INa and ICa seemed to be more stable at high pressures compared to the activation parameters, as no significant changes were found up to a 20-MPa treatment. For higher pressure applications (e.g., 25 MPa), there seemed to be a marked loss of membrane integrity and INa, IK and ICa almost disappeared.  相似文献   

6.
7.
Voltage-clamp of cut-end skeletal muscle fibre: a diffusion experiment   总被引:1,自引:0,他引:1  
Membrane potential and current were studied in cut end fibres of frog skeletal muscle under current and voltage clamp conditions, by the double sucrose gap technique. Similar action potentials were recorded under current clamp conditions with either the microelectrode or the double sucrose gap techniques. Under voltage clamp conditions, the control of the membrane potential was maintained adequately. The early current was sensitive to both TTX and external Na concentration suggesting that the current was carried by Na ions. Sodium current (INa) was subsequently analysed using the Hodgkin-Huxley formulae. INa half-activation and inactivation occurred at -34 mV and -60 mV, respectively. Na-rich solution applied internally by diffusion through cut ends produced a reduction of INa associated with a shift of the sodium current reversal potential (VNa) towards more negative membrane potentials. This suggested that the sodium electromotive force was reduced by the increase in internal Na content of the fibre. Iodate applied externally changed neither the activation nor the inactivation time courses of INa, but reduced the peak current. Conversely, internally applied by diffusion from the cut end of skeletal muscle fibre, iodate slowed down the time course of INa inactivation and decreased the current peak. In conclusion, the double sucrose gap technique adapted to cut end frog skeletal muscle fibre allows a satisfactory analysis of INa.  相似文献   

8.
Activities of Na channels and Na pumps were studied in the rat cortical collecting tubule (CCT) during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet, diuretics, or administration of exogenous aldosterone. Tubules were isolated and split open to expose the luminal membrane surface. Using the whole-cell patch-clamp technique, activities of the apical Na channels and the basolateral Na pumps were measured in principal cells as the currents inhibited by amiloride (10 microM) and ouabain (1 mM), respectively. Na channel current (INa) was not measurable in CCTs from control animals on a normal diet. INa was approximately 200 pA/cell in CCTs from animals on a low-Na diet or infused with aldosterone using osmotic minipumps. Currents attributable to the Na pump (Ipump) were similar in control animals and animals on a low-Na diet. Maximal currents were approximately 35 pA/cell in both groups, and decreased with hyperpolarization of the cell membrane. In contrast, administration of exogenous aldosterone increased Ipump fourfold. Coinfusion of aldosterone and amiloride in vivo through the minipumps did not affect the induction of INa but reduced the induction of Ipump by 80%. We conclude that the induction of channel activity in this tissue is a direct action of aldosterone, whereas the induction of pump activity may be a consequence of the increased Na traffic through the epithelial cells.  相似文献   

9.
The effect of Bistramide A, a toxin isolated from Bistratum lissoclinum Sluiter (Urochordata), on the peak sodium current (INa) of frog skeletal muscle fibres was studied with the double sucrose gap voltage clamp technique. External or internal application of Bistramide A inhibited INa without alteration of the kinetic parameters of the current nor of the apparent reversal potential for Na. The steady-state activation curve of INa was unchanged while the steady-state inactivation curve of INa was shifted towards more negative membrane potentials. Dose-response curves indicated an apparent dissociation constant for Bistramide A of 3.3 microM and a Hill coefficient of 1.2 which suggested a one to one relation between the toxin and Na channel. The inhibition of INa occurred at rest, and was more important at more positive holding potentials. Bistramide A exhibited only a weak frequency-dependent effect. The toxin did not interact with the use-dependent effect of lidocaine. It mainly blocked Na channels at more depolarized holding potentials. The toxin blocked Na channels when it was internally applyed and when the inactivation gating system has been previously destroyed by internal diffusion of iodate. The data suggest that Bistramide A inhibited the Na channel both at rest and in the inactivated state and occupied a site which was not located on the inactivation gate.  相似文献   

10.
We showed recently that ginsenosides inhibit the activity of various types of ion channel. Here we have investigated the role of the carbohydrate component of ginsenoside Rg3 in the inhibition of Na+ channels. The channels were expressed in Xenopus oocytes by injecting cRNAs encoding rat brain Nav1.2 alpha and beta1 subunits, and analyzed by the two-electrode voltage clamp technique. Treatment with Rg3 reversibly inhibited the inward Na+ peak current (INa) with an IC50 of 32.2 +/- 4.5 microM, and the inhibition was voltage-dependent. To examine the role of the sugar moiety, we prepared a straight chain form of the second glucose and a conjugate of this glucose with 3-(4-hydroxyphenyl) propionic acid hydrazide (HPPH). Neither derivative inhibited INa. Treatment with the carbohydrate portion of ginsenoside Rg3, sophorose [beta-D-glucopyranosyl (1-->2)- beta-glucopyranoside], or the aglycone (protopanaxadiol), on their own or in combination had no effect on INa. These observations indicate that the carbohydrate portion of ginsenoside Rg3 plays an important role in its effect on the Na+ channel.  相似文献   

11.
The effects of bethanidine sulphate, a pharmacological analog of the cardiac antibrillatory drug, bretylium tosylate, were studied on action potentials (APs) and K+, Na+, and Ca2+ currents of single cultured embryonic chick heart cells using the whole-cell current clamp and voltage clamp technique. Extracellular application of bethanidine (3 X 10(-4) M) increased the overshoot and the duration of the APs and greatly decreased the outward K+ current (IK) and potentiated the inward fast Na+ currents (INa) and the inward slow calcium current (ICa). However, intracellular introduction of bethanidine (10(-4) M) blocked INa. In isolated atria of rat, bethanidine increased the force of contraction in a dose-dependent manner. These findings suggest that when applied extracellularly, bethanidine exerts a potentiating effect on the myocardial fast Na+ current and slow Ca2+ current and an inhibitory effect of IK. The positive inotropic effect of bethanidine could be due, at least in part, to an increase of Ca2+ influx via the slow Ca2+ channel and the Na-Ca exchange. It is suggested that the decrease of IK by bethanidine may account for its antifibrillatory action.  相似文献   

12.
Development of the fast sodium current in early embryonic chick heart cells   总被引:4,自引:0,他引:4  
Single ventricle cells were dissociated from the hearts of two-, three-, four- or seven-day-old chick embryos, and were maintained in vitro for an additional 6 to 28 hr. Rounded 13 to 18 micron cells with input capacitance of 5 to 10 pF were selected for analysis of fast sodium current (INa). Voltage command protocols designed to investigate the magnitude, voltage dependence, and kinetics of INa were applied with patch electrodes in the whole-cell clamp configuration. INa was present in over half of the 2d, and all 3d, 4d and 7d cells selected. The current showed no systematic differences in activation kinetics, voltage dependence, or tetrodotoxin (TTX) sensitivity with age or culture conditions. Between the 2d and 7d stages, the rate of current inactivation doubled and channel density increased about eightfold. At all stages tested, INa was blocked by TTX at a half-effective concentration of 0.5 to 1.0 nM. We conclude that the lack of Na dependence of the action potential upstroke on the second day of development results from the relatively depolarized level of the diastolic potential, and failure to activate the small available excitatory Na current. The change from Ca to Na dependence of the upstroke during the third to the seventh day of incubation results partly from the negative shift of the diastolic potential during this period, and in part from the increase in available Na conductance.  相似文献   

13.
OBJECTIVE: To study the interaction between salicylate and class 1 antiarrhythmic agents. METHODS: The effects of salicylate on class 1 antiarrhythmic agent-induced tonic and phasic block of the Na+ current (INa) of ventricular myocytes and the upstroke velocity of the action potential (Vmax) of papillary muscles were examined by both the patch clamp technique and conventional microelectrode techniques. RESULTS: Salicylate enhanced quinidine-induced tonic and phasic block of INa at a holding potential of -100 mV but not at a holding potential of -140 mV; this enhancement was accompanied by a shift of the hinfinity curve in the presence of quinidine in a further hyperpolarized direction, although salicylate alone did not affect INa. Salicylate enhanced the tonic and phasic block of Vmax induced by quinidine, aprindine and disopyramide but had little effect on that induced by procainamide or mexiletine; the enhancing effects were related to the liposolubility of the drugs. CONCLUSIONS: Salicylate enhanced tonic and phasic block of Na+ channels induced by class 1 highly liposoluble antiarrhythmic agents. Based on the modulated receptor hypothesis, it is probable that this enhancement was mediated by an increase in the affinity of Na+ channel blockers with high lipid solubility to the inactivated state channels.  相似文献   

14.
To study the kinetic and steady-state properties of voltage-dependent sodium conductance activation, squid giant axons were perfused internally with either pronase or N-bromoacetamide and voltage clamped. Parameters of activation, tau m and gNa(V), and deactivation, tau Na, were measured and compared with those obtained from control axons under the assumption that gNa oc m3h of the Hodgkin-Huxley scheme. tau m(V) values obtained from the turn-on of INa agree well with control axons and previous determinations by others. tau Na(V) values derived from Na tail currents were also unchanged by pronase treatment and matched fairly well previously published values. tau m(V) obtained from 3 x tau Na(V) were much larger than tau m(V) obtained from INa turn-on at the same potentials, resulting in a discontinuous distribution. Steady-state In (gNa/gNa max - gNa) vs. voltage was not linear and had a limiting logarithmic slope of 5.3 mV/e-fold gNa. Voltage step procedures that induce a second turn-on of INa during various stages of the deactivation (Na tail current) process reveal quasiexponential activation at early stages that becomes increasingly sigmoid as deactivation progresses. For moderate depolarizations, primary and secondary activation kinetics are superimposable. These data suggest that, although m3 can describe the shape of INa turn-on, it cannot quantitatively account for the kinetics of gNa after repolarization. Kinetic schemes for gNa in which substantial deactivation occurs by a unique pathway between conducting and resting states are shown to be unlikely. It appears that the rate-limiting step in linear kinetic models of activation may be between a terminal conducting state and the adjacent nonconducting intermediate.  相似文献   

15.
钠钙交换是小鼠心脏发育中最早有功能性表达的通道基因。它的功能主要是通过泵出1个钙,泵入3个钠位置细胞内的钙稳态,此外可能参与兴奋收缩偶联。但是,至今钠钙交换在心脏发育过程中的功能性表达及其在细胞早期兴奋形成中的作用还不是很清楚。采用胚胎干细胞分化的心肌细胞为研究对象,发现在发育极早期,电压钳制在35mV的条件下,10mmol/L咖啡因诱导的内向电流的80%能被灌流液中Na^+被等浓度的Li^+取代(n=8)。此为钠钙交换电流。所有钳制的细胞单细胞RT-PCR都检测到了NCX1亚型的mRNA表达。进一步研究了钠钙交换的功能,发现等浓度Li^+取代灌流液中Na^+及应用高浓度Ni^2+阻断了膜电位震荡及与震荡相间的动作电位(早期膜兴奋形式)。因此认为钠钙交换(NCX1亚型)在心脏发育极早期的心肌细胞中已有大量功能性表达,它对于早期自主性兴奋活动的发生起着关键性的作用。  相似文献   

16.
The effects of benzocaine (0.5-1 mM) on normal Na currents, and on Na current and gating charge movement (Q) of batrachotoxin (BTX)-modified Na channels were analyzed in voltage-clamped frog node of Ranvier. Without BTX treatment the decay of Na current during pulses to between -40 and 0 mV could be decomposed into two exponential components both in the absence and in the presence of benzocaine. Benzocaine did not significantly alter the inactivation time constant of either component, but reduced both their amplitudes. The amplitude of the slow inactivating component was more decreased by benzocaine than the amplitude of the fast one, leading to an apparently faster decline of the overall Na current. After removal of Na inactivation and charge movement immobilization by BTX, benzocaine decreased the amplitude of INa with no change in time course. INa, QON, and QOFF were all reduced by the same factor. The results suggest that the rate of reaction of benzocaine with its receptor is slow compared to the rates of channel activation and inactivation. The differential effects of benzocaine on the two components of Na current inactivation in normal channels can be explained assuming two types of channel with different rates of inactivation and different affinities for the drug.  相似文献   

17.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

18.
The effects of 20 microM each of amiodarone, lidocaine and quinidine on action potential and membrane currents were studied in rat ventricular cells. At a stimulation frequency of 0.1 Hz, quinidine prolonged the action potential duration (APD50) from 120 +/- 26 to 660 +/- 8 msec and increased the time to peak (Tp) amplitude from 7 +/- 1 msec to 32 +/- 6 msec. Lidocaine shortened APD50 from 123 +/- 15 to 83 +/- 6 msec without altering Tp. Amiodarone changed neither APD50 nor Tp. Voltage clamp study revealed that quinidine inhibited sodium inward current (INa) even when this current was elicited by depolarizing pulses at 0.1 Hz from a holding potential of -90 mV. For amiodarone and lidocaine, the inhibition was observed when INa was elicited from a holding potential of -70 mV. A frequency-dependent inhibition of INa by amiodarone and lidocaine was observed at frequencies higher than 1 Hz. Quinidine showed this inhibition even at 1 Hz. In correlation with the stronger frequency dependent inhibition of INa, a greater delay of the recovery and increase of the non-recovery fraction of INa was induced by quinidine. For lidocaine and amiodarone, only the recovery time constant was delayed. In cells treated with sea anemone toxin (ATX, 0.2 microM), APD50 was prolonged to 4-5 sec in 5 min. Quinidine, but not amiodarone, completely reversed the effect of ATX. Quinidine showed use-dependent inhibition of INa in these ATX-treated cells. Amiodarone, however, did not show this inhibition. It is likely that amiodarone suppresses INa by delaying the recovery of INa instead of blocking the open-state Na(+)-channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
L Goldman 《Biophysical journal》1988,54(6):1027-1038
Steady state to peak Na current ratio (INa,/INapeak) in Myxicola is greater, under some conditions, in internal Cs than in K, indicating less steady state inactivation in Csi. Csi effects are selective for steady state inactivation, with negligible effects on single-pulse inactivation time constants (Th). Mean Th ratios (Csi to Ki) were 1.04 and 1.02 at 0 and 10 mV. Two pulse inactivation time constants were also little affected. Inactivation is blocked in an all or none manner. Ki has little effect on steady state inactivation in the presence of inward INa, with INa/INapeak often declining to zero at positive potentials and independent of external Na concentration from 1/4 to 2/3 artificial sea water (ASW). Cs also has little effect at more negative potentials, but more with either more positive potentials or Na reduction, both reducing inward INa. K effects are evident when Na channel current is outward. A site in the current pathway when occupied selectively blocks inactivation gate closure. As occupancy does not depend significantly on potential, the site must not be very deep into the membrane field. Inactivation gates may associate with these sites on closure. The inactivated state may consist of a positively-charged structure occluding the inner channel mouth.  相似文献   

20.
I Lotan  N Dascal  Z Naor  R Boton 《FEBS letters》1990,267(1):25-28
Effects of purified subtypes I, II and III of protein kinase C (PKC) on voltage-dependent transient K+ (A) and Na+ channels were studied in Xenopus oocytes injected with chick brain RNA. The experiments were performed in the constant presence of 10 nM beta-phorbol 12-myristate-13-acetate (PMA). Intracellular injection of subtype I (tau) reduced the A-current (IA), with no effect on Na+ current (INa). PKC subtype II (beta 1 + beta 2) and III (alpha) reduced both currents. PKC did not affect the response to kainate. Inactivated (heated) or unactivated (injected in the absence of PMA) enzyme and vehicle alone had no effect. Our results strongly suggest that INa and IA in vertebrate neurons are modulated by PKC; all PKC subtypes exert a similar effect on the A-channel while only subtypes II and III modulate the Na+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号