首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule-dependent reticulopodial motility: is there a role for actin?   总被引:2,自引:0,他引:2  
We summarize our recent immunocytochemical characterization of the reticulopodial cytoskeleton of two allogromiid foraminifers and our pharmacologic dissection of its motility. The reticulopodial microtubule cytoskeleton stained with an antiserum to brain microtubule-associated protein 2. Polymeric actin was localized in the reticulopodia by rhodamine-phalloidin staining. Microtubule inhibitors reversibly inhibited all aspects of motility; cytochalasins induced altered morphology and disorganization of motility but did not inhibit pseudopodial movements or intracellular transport. Simultaneous application of KCN and salicylhydroxamic acid (an alternative oxidase inhibitor) rapidly blocked all movement, indicating that motility is dependent on metabolic energy and that an alternative oxidative pathway functions in allogromiids. Micromanipulation and laser microsurgical experiments revealed tension throughout the reticulopodium. Our results suggest that microtubules are active components of the reticulopodial motile machinery. Actin may mediate substrate adhesion, whole-cell locomotion, pseudopodial tension, and coordination of the microtubule-based motility.  相似文献   

2.
The reticulopodial networks of the foraminiferan protozoans Allogromia sp., strain NF, and A. laticollaris display rapid (up to 11 microns/second) and bidirectional saltatory transport of membrane surface markers (polystyrene microspheres). Electron microscopy shows that microspheres adhere directly to the reticulopodial surface glycocalyx. A videomicroscopic analysis of this phenomenon reveals that microsphere movement is typically independent of pseudopod extension/withdrawal and that particles of different sizes and surface properties display similar motile characteristics. The motile properties of surface-associated microspheres appear identical to those of saltating intracellular organelles. Indeed, in some instances the surface-attached microspheres appear transiently linked in motion to these underlying organelles. Our observations suggest that, in reticulopodia, surface transport of microspheres and intracellular transport of organelles are driven by a common mechanism.  相似文献   

3.
Bundles of microtubules (MTs) are readily visualized in vivo by videomicroscopy in highly flattened reticulopodia of the foraminiferan protozoan Allogromia sp. strain NF. In this report we use videomicroscopy, immunocytochemistry, and high-voltage electron microscopy to characterize the dynamic changes that occur in this extensive MT cytoskeleton, and in the associated cytoplasmic transport, during induced withdrawal and subsequent reextension of reticulopodia. Within seconds after application of the withdrawal stimulus (seawater substitute made hypertonic with MgCl2) intracellular bidirectional transport along linear MT-containing fibrils ceases and is replaced by an inward, constant-velocity flow of cytoplasm along the fibrils. As withdrawal continues, most fibrils become wavy and coalesce to form phase-dense pools. These wavy fibrils and phase-dense pools contain a paracrystalline material and few if any MTs. Same-section correlative immunofluorescence and high-voltage electron microscopy reveal that the paracrystalline material contains tubulin. During recovery linear fibrils (MTs) rapidly extend from the phase-dense pools (paracrystals), which concurrently shrink in size, thus reestablishing normal network morphology and motility. We conclude that the MT cytoskeleton in Allogromia reticulopodia is transformed during withdrawal into a tubulin-containing paracrystal, which serves as a temporary reservoir of MT protein and an initiation site for MT regrowth.  相似文献   

4.
Correlative light, high-voltage electron and conventional electron microscopic methods were used to investigate digestion in two allogromiid foraminiferans, Allogromia sp., strain NF, and A. laticollaris Arnold. Microscopic observations showed that bacterial prey are phagocytosed by reticulopodia and are transported to the allogromiid cell body within blister-like phagosomes. Larger prey (algae, diatoms) are transported along the reticulopodial surface and are either stored extrathalamously or phagocytosed at the oral opening (peduncle). Studies of allogromiids optimally fixed and labeled with an extracellular-space label (colloidal thorium) showed that phagocytosed prey are completely enclosed by a plasma membrane envelope; this finding was corroborated by a serial-section three-dimensional reconstruction of the oral zone of one allogromiid. Cytochemical staining for acid phosphatase showed that lysosomes are absent from reticulopods but abundant in the cell body, particularly in the oral zone cytoplasm. We conclude that digestion in allogromiid foraminiferans is accomplished by a vacuole-based digestive apparatus and not by extracellular digestion within a lacunary system, as has been suggested in earlier studies.  相似文献   

5.
《The Journal of cell biology》1983,97(6):1668-1676
Lamellipodia have been induced to form within the reticulopodial networks of Allogromia laticollaris by being plated on positively charged substrata. Video-enhanced, polarized light, and differential interference contrast microscopy have demonstrated the presence of positively birefringent fibrils within these lamellipodia. The fibrils correspond to the microtubules and bundles of microtubules observed in whole-mount transmission electron micrographs of lamellipodia. Microtubular fibrils exhibit two types of movements within the lamellipodia: lateral and axial translocations. Lateral movements are often accompanied by reversible lateral associations between adjacent fibrils within a lamellipodium. This lateral association-dissociation of adjacent fibrils has been termed 'zipping' and 'unzipping'. Axial translocations are bidirectional. The axial movements of the microtubular fibrils can result in the extension of filopodia by pushing against the plasma membrane of the lamellipodia. Shortening, or complete withdrawal, of such filopodia is accomplished by the reversal of the direction of the axial movement. The bidirectional streaming characteristic of the reticulopodial networks also occurs within the lamellipodia. In these flattened regions the streaming is clearly seen to occur exclusively in association with the intracellular fibrils. Transport of both organelles and bulk hyaline cytoplasm occurs bidirectionally along the fibrils.  相似文献   

6.
The cell structure of a reticulopodial amoeba, Filoreta marina Bass et Cavalier-Smith, is described. The cell is covered by a unitary membrane; glycostyles are absent. The life cycle comprises the uninucleate stage, multinucleate plasmodium, and spherical uninucleate cysts. The microtubules inside pseudopodia and the flagella are absent. The vesicular nuclei, endoplasmic reticulum, and Golgi apparatus are of a typical structure. The plasmodium produces a branched network of narrow anastomosing (reticulopodia) and wide pseudopodia. Thin unbranched micropseudopodia have also been observed. Oval mitochondria with a size of 0.3 × 0.6 μm contain the tubular cristae. A bidirectional motion of the cytoplasm inside the reticulopodia has been detected. Extrusomes (extrusive organelles) have not been found. The contractile vacuole is absent. F. marina feeds on bacteria. A similarity of this amoeba to other filose and reticulopodial amoebas is discussed.  相似文献   

7.
Transient shape changes of organelles translocating along microtubules are directly visualized in thinly spread cytoplasmic processes of the marine foraminifer. Allogromia laticollaris, by a combination of high- resolution video-enhanced microscopy and fast-freezing electron microscopy. The interacting side of the organelle flattens upon binding to a microtubule, as if to maximize contact with it. Organelles typically assume a teardrop shape while moving, as if they were dragged through a viscous medium. Associated microtubules bend around attachments of the teardrop-shaped organelles, suggesting that they too are acted on by the forces deforming the organelles. An 18-nm gap between the organelles and the microtubules is periodically bridged by 10-nm-thick cross-bridge structures that may be responsible for the binding and motive forces deforming organelles and microtubules.  相似文献   

8.
cAMP/theophylline exaggerates cell shape—whether the fibroblastic morphology of controls or the epithelioid shape of colchicine-treated cells. The ultrastructural basis is that cAMP/theophylline increases the number and linearity of microtubules and microfilament bundles, although where also treated with colchicine, the cells adopt a well-spread shape maintained by microfilament bundles alone. Since interference reflection microscopy shows that colchicine promotes the marked alignment of focal contacts (which terminate microfilament bundles) it is concluded that microtubules encourage angular cell form and modify the pattern of adhesions by influencing the directionality of microfilament bundle formation although they are inessential for the maintenance of the spread form or adhesion per se.  相似文献   

9.
Allogromia laticollaris, a benthic marine foraminifer, extends numerous trunk filopodia that repeatedly branch, anastomose, and fuse again to form the reticulopodial network (RPN), within which an incessant streaming of cytoplasmic particles occurs. The motion of the particles is saltatory and bidirectional, even in the thinnest filopodia detected by optical microscopy. Fibrils are visible by differential interference microscopy, and the PRN displays positive birefringence in polarized light. These fibrils remain intact after lysis and extraction of the RPN in solutions that stabilize microtubules (MTs). Electron micrographs of thin sections through these lysed and stabilized cytoskeletal models reveal bundles of MTs. The RPNs of living Allogromia may be preserved by standard EM fixatives only after acclimatization to calcium-free seawater, in which the streaming is normal. The MTs in the RPN are typically arranged in bundles that generally lie parallel to the long axis of the trunk and branch filopodia. Stereo electron micrographs of whole-mount, fixed, and critical-point-dried organisms show that the complex pattern of MT deployment reflects the pattern of particle motion in both flattened and highly branched portions of the RPN. Cytoplasmic particles, some of which have a fuzzy coat, are closely associated with, and preferentially oriented along, either single MTs or MT bundles. Thin filaments (approximately 5 nm) are also observed within the network, lying parallel to and interdigitating with the MTs, and in flattened terminal areas of the filopodia. These filaments do not bind skeletal muscle myosin S1 under conditions that heavily decorate actin filaments in controls (human blood platelets), and are approximately 20% too thin to be identified ultrastructurally as F-actin.  相似文献   

10.
Some properties of cytoplasmic transport in a cold-adapted (Antarctic) organism are reported for the first time. Phase-contrast light microscopy of Astrammina rara, an arenaceous foraminiferan protozoan, reveals that the saltatory transport of cytoplasmic granules in reticulopods occurs bidirectionally and at rates up to 7.5-micron/s. Extracellularly attached latex microspheres are rapidly translocated on the reticulopodial surface, thus demonstrating membrane fluidity at low (-1.8 degrees C) ambient temperatures. Rapid extension/withdrawal and branching/fusing of pseudopodia further illustrate dynamic plasma membrane activity at subzero temperatures. Immunofluorescence microscopy with an antibody monospecific for tubulin shows that these pseudopods contain microtubules. The motility of this cold-adapted foraminifer therefore appears fully comparable to the motility of allogromiid foraminifers from temperate waters.  相似文献   

11.
Structural changes of microtubules, incorporation of radioactively labelled components into phospholipids, cell motility, growth and phagocytosis were studied under the effect of four drugs affecting microtubular assembly: colchicine, nocodazole, vinblastine and taxol. Although the first three agents influence microtubules in the direction of depolymerization and the fourth stabilizes them, their effects on the structure of microtubules cannot be explained by this. Using confocal microscopy after an acetylated anti-tubulin label, in nocodazole- and colchicine-treated cells, the basal body cages disappear and longitudinal microtubules (LM) became thinner without changing transversal microtubules (TM). After taxol treatment LM also became thinner, however TM disappeared. Under the effect of vinblastine TM became thinner, without influencing LM. These drugs influence the incorporation of components ([(3)H]-serine, [(3)H]-palmitic acid and (32)P) into phospholipids, however their effect is equivocal and cannot be consequently coupled with the effect on the microtubules. Nocodazole, vinblastine and taxol significantly reduced the cell's motility, however colchicine did so to a lesser degree. Vinblastine and nocodazole totally inhibited, and taxol significantly decreased cell growth, while colchicine in a lower concentration increased the multiplication of cells. Phagocytosis was not significantly influenced after 1 min, but after 5 min all the agents studied (except colchicine) significantly inhibited phagocytosis. After 15 and 30 min each molecule caused highly significant inhibition. The experiments demonstrate that drugs affecting microtubular assembly dynamics influence differently the diverse (longitudinal, transversal etc.) microtubular systems of Tetrahymena and also differently influence microtubule-dependent physiological processes. The latter are more dependent on microtubular dynamics than are changes in phospholipid signalling.  相似文献   

12.
Actin cytoskeleton of resting bovine platelets   总被引:2,自引:0,他引:2  
Actin filaments in resting discoid bovine platelets were examined by fluorescence and electron microscopy. Rhodamine-phalloidin staining patterns showed a characteristic wheel-like structure which consisted of a central small circle connected by several radial spokes to a large peripheral circle. This wheel-like structure was composed of actin filaments forming a characteristic arrowhead structure with heavy meromyosin from muscle. Actin filaments were densely arrayed in parallel with a marginal microtubule band and radiated out from the center to the periphery. Platelets treated with colchicine lost their marginal microtubule band but retained their wheel-like structure and normal discoid form. Cytochalasin B disrupted the wheel-like structure but not the marginal microtubule band or the normal discoid form. After simultaneous treatment with both cytochalasin B and colchicine, platelets lost their discoid shape. These results suggest that actin filaments and microtubules both play important roles in the maintenance of the discoid shape of resting bovine platelets.  相似文献   

13.
Apoptotic cells in the taste buds and epithelia of mouse circumvallate papillae after colchicine treatment were examined by the methods of in situ DNA nick-end labeling, immunocytochemistry, and electron microscopy. After colchicine treatment, numerous positive cells appeared in the taste buds by DNA nick-end labeling, and some epithelial cells in the basal and suprabasal layers in and around the circumvallate papillae also revealed positive staining. Condensed and fragmented nuclei with a high density were occasionally found in the taste bud cells and in the basal and suprabasal layer epithelial cells by electron-microscopic observation. An immunocytochemical reaction for tubulin revealed weak staining in taste bud cells, because of the depolymerization of microtubules, and a decrease of the microtubules in the taste bud cells was observed by electron microscopy. These results indicate that colchicine treatment of mice induces the apoptosis of taste bud and epithelial cells in the circumvallate papillae and dorsal epithelial cells around the circumvallate papillae.  相似文献   

14.
The localization of kinesin in EBTr (bovine embryonic trachea fibroblast) cells was studied by indirect immunofluorescence microscopy using an affinity-purified antibody against bovine adrenal kinesin. It has already been shown that in interphase cells a part of kinesin is located on microtubules and the rest diffusely distributed throughout the cytoplasm [Murofushi et al., 1988]. When microtubules were depolymerized with cold or colchicine treatment, antikinesin antibody-stained fibrous components distinct from microtubules. These fibrous structures were considered to be stress fibers because they were stained with rhodamine-phalloidin and because the fibrous staining with antikinesin antibody was completely lost by treating the cells with cytochalasin D along with colchicine. When cold-treated cells in which a major part of kinesin had been localized on stress fibers were incubated at 37 degrees C, kinesin reappeared on reconstituted microtubules. These observations strongly suggest that kinesin has affinity not only to microtubules but also to stress fibers in culture cells.  相似文献   

15.
We have examined the role of cytoskeletal elements with respect to the formation and maintenance of viroplasmic centers (VCs) in Tipula iridescent virus (TIV)-infected mosquito Aedes albopictus (C6/36) cells. Filamentous systems consisting of microtubules and microfilaments were detected by immunofluorescence microscopy. Inoculation of cells with TIV resulted in an alteration of microtubule and microfilament organization whether or not VCs developed. The formation of short arrays of microtubules induced by taxol or the depolymerization of microtubules by colchicine, as observed by immunofluorescence microscopy, had no apparent effect upon the development of VCs as detected by Hoechst staining and electron microscopy. The dissolution of the actin-containing filamentous system by cytochalasin B also had no effect upon development. We conclude from these results that microtubules and microfilaments are not involved in the formation or maintenance of VCs in TIV-infected A. albopictus (C6/36) cells.  相似文献   

16.
J. L. Travis  S. S. Bowser 《Protoplasma》1990,154(2-3):184-189
Summary Video-enhanced microscopy was used to study the behavior of cytoplasmic microtubules in flattened reticulopodia of the marine protistAllogromia. Linear microtubule bundles were observed bending to various degrees and then straightening. When microtubules bent sufficiently to contact the plasma membrane, protuberances extended from the pseudopodial margins. These protuberances withdrew as the bent microtubules straightened. In extreme cases, microtubules formed c-shaped loops which moved laterally through the cytoplasm and contacted fenestrae formed within the flattened pseudopodia. A given fenestra first deformed at the site of microtubule contact and then closed as the loop continued its motion; reversal of the microtubule motion reopened the fenestra. By electron microscopy, microtubules are consistently seen within 20 nm of the plasma membrane and are often connected to the membrane by detergent-resistant crosslinks. Together, these observations indicate that microtubule movements can deform the plasma membrane and thus mediate certain aspects of cellular morphogenesis.  相似文献   

17.
The importance of intact microtubules in the processing, storage and regulated secretion of von Willebrand factor (vWf) from Weibel-Palade bodies in endothelial cells was investigated. Human umbilical vein endothelial cells treated for 1 h with colchicine (10(-6) M) or nocodozole (10(-6) M) lost their organized microtubular network. Stimulation of these cells with secretagogues (A23187, thrombin) produced only 30% release of vWf in comparison to control cells containing intact microtubules. The nocodazole treatment was reversible. One-hour incubation in the absence of the drug was sufficient for microtubules to reform and restore the full capacity of the cells to release vWf. Long-term incubation (24 h) of endothelial cells with microtubule-destabilizing agents had a profound effect on vWf distribution. In control cells, vWf was localized to organelles in the perinuclear region (i.e., endoplasmic reticulum and Golgi apparatus) and to Weibel-Palade bodies. In drug-treated cells vWf staining was dispersed throughout the cytoplasm, and Weibel-Palade bodies were absent. The vWf synthesized in the absence of microtubules contained significantly less large multimers than that produced by control cells. Since Weibel-Palade bodies specifically contain the large multimers, we hypothesize that the structural defect in vWf secreted by cells in the absence of microtubules is due to the lack of Weibel-Palade bodies in these cultures.  相似文献   

18.
Summary During mitosis in multinucleated agamonts ofAllogromia laticollaris the nucleolar substance cannot be demonstrated in the nuclei, but only in the cytoplasm as large opaque bodies, some of which are surrounded by two membranes. Only a few smaller bodies are still present within vacuoles of young agamonts formed subsequent to the dividing state. Since the nuclear envelope persists during karyokinesis, the division spindle is localized intranuclearly. The component continuous microtubules, which prefer the nuclear periphery, are mostly visible as bundles, whereas the microtubules running to the chromosomes appear single and less numerous. Centrosomes can be noticed not only at elongated but also at ovoid or irregularly shaped nuclei. These centrosomes represent round or elliptic bodies surrounded by a membrane and consist of granular and fibrillar material. They occur within the perinuclear space and are restricted to the state of karyokinesis.  相似文献   

19.
The organization of microtubular systems in the quadriflagellate unicell Polytomella agilis has been reconstructed by electron microscopy of serial sections, and the overall arrangement confirmed by immunofluorescent staining using antiserum directed against chick brain tubulin. The basal bodies of the four flagella are shown to be linked in two pairs of short fibers. Light microscopy of swimming cells indicates that the flagella beat in two synchronous pairs, with each pair exhibiting a breast-stroke-like motion. Two structurally distinct flagellar rootlets, one consisting of four microtubules in a 3 over 1 pattern and the other of a striated fiber over two microtubules, terminate between adjacent basal bodies. These rootlets diverge from the basal body region and extend toward the cell posterior, passing just beneath the plasma membrane. Near the anterior part of the cell, all eight rootlets serve as attachment sites for large numbers of cytoplasmic microtubules which occur in a single row around the circumference of the cell and closely parallel the cell shape. It is suggested that the flagellar rootless may function in controlling the patterning and the direction of cytoplasmic microtubule assembly. The occurrence of similar rootlet structures in other flagellates is briefly reviewed.  相似文献   

20.
Although cell movement is driven by actin, polarization and directional locomotion require an intact microtubule cytoskeleton that influences polarization by modulating substrate adhesion via specific targeting interactions with adhesion complexes. The fidelity of adhesion site targeting is precise; using total internal reflection fluorescence microscopy (TIRFM), we now show microtubule ends (visualized by incorporation of GFP tubulin) are within 50 nm of the substrate when polymerizing toward the cell periphery, but not when shrinking from it. Multiple microtubules sometimes followed similar tracks, suggesting guidance along a common cytoskeletal element. Use of TIRFM with GFP- or DsRed-zyxin in combination with either GFP-tubulin or GFP-CLIP-170 further revealed that the polymerizing microtubule plus ends that tracked close to the dorsal surface consistently targeted substrate adhesion complexes. This supports a central role for the microtubule tip complex in the guidance of microtubules into adhesion foci, and provides evidence for an intimate cross-talk between microtubule tips and substrate adhesions in the range of molecular dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号