首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cultured rat Kupffer cells were incubated in presence of biologically tritiated Salmonella abortus equi lipopolysaccharide. Uptake of lipopolysaccharide increased rapidly during the first 2 h of incubation and then levelled off. Within the first h of incubation 10(6) Kupffer cells were able to ingest up to 18 micrograms lipopolysaccharide. Kupffer cells metabolised lipopolysaccharide and released lipopolysaccharide-related substances, but neither the cell-associated lipopolysaccharide nor the released lipopolysaccharide products were detoxified, as measured by the mouse lethality test.  相似文献   

3.
4.
The mechanisms of hepatic reticuloendothelial cell dysfunction in obstructive jaundice were investigated using cultured hamster Kupffer cells. The introduction of free bile acids, cholic acid (CA) at concentrations over 2 mM and chenodeoxycholic acid (CDCA) over 1 mM inhibited colloidal carbon pinocytosis. CA and CDCA at concentrations over 0.5 mM inhibited IgG-coated sheep red blood cell phagocytosis. With the application of conjugated bile acid and endotoxin at concentrations over 50 micrograms/ml, endocytic function was inhibited. With bile acids, a dose-dependent increase in the concentration of beta-glucuronidase occurred in the culture medium, and with endotoxin a time-dependent increase in beta-glucuronidase was noted. Bile acids produced alterations in cell organelles before destruction of the cell membrane. The presence of endotoxin led to the appearance of large vacuoles in the cytoplasm. These observations suggest that bile acids and endotoxin inhibit Kupffer cells by different mechanisms. We tentatively conclude that bile acids rather than endotoxin influence Kupffer cells in vivo.  相似文献   

5.
6.
Summary The fine structure of Kupffer cells has been studied at various times after an intravenous injection of lipopolysaccharide of Salmonella abortus equii. The most prominent effects were: an increase in the number and dimensions of phagocytic vacuoles (often containing ingested LPS and neutrophilic granulocytes); mitochondrial damage, including disintegration of the matrix and cristae; an increase in the amount of dilated, lucent rough endoplasmic reticulum; presence of fat droplets in the cytoplasm. Five days after injection of lipopolysaccharide, the Kupffer cells had resumed their normal ultrastructure.Several minutes after injection of lipopolysaccharide, platelets adhered to the Kupffer and endothelial cells. Between one and six hours, neutrophilic granulocytes accumulated in the liver sinusoids. The resulting obstruction of the hepatic microcirculation most probably affected cellular ultrastructure by ischaemia. At three days, the number of Kupffer cells was doubled, and increased further at later time intervals.  相似文献   

7.
We studied the kinetics of [3H]lipopolysaccharide ([3H]LPS) (endotoxin) binding to Kupffer cells and hepatocytes at the level of the microtubular system after treatment with gadolinium chloride (GdCl(3)) and colchicine. Liver perfusion in Sprague-Dawley rats involves both portal vein and thoracic inferior vena cava cannulations as inlet and outlet, respectively. The subhepatic inferior vena cava is ligated to prevent perfusate leakage. Buffer containing 2% serum and [3H]LPS is administered at 1 ml/min and collected for 50 min. Rate constants for hepatocellular clearance of [3H]LPS in controls, colchicine-treated rats, GdCl(3)-treated rats, and colchicine plus GdCl(3)-treated rats are assessed using a simplified mathematical model. Forward-binding, reversal-binding, residency time, and influx rate constants are estimated. Results show that in GdCl(3)-treated rats, the hepatocytes effectively clear endotoxin from the circulation, and its ultimate binding affinity at the hepatocyte site is somewhat reduced compared to the Kupffer cells. In colchicine-treated rats, the disruption of the microtubule network altered [3H]LPS binding with Kupffer cells, suggesting that the microfilament-microtubular network also affects Kupffer cell function. Simultaneous treatments with colchicine and GdCl(3) increased the influx rate constant, suggesting that the compiled morphological alterations up-regulated endotoxin clearance by the liver, as indicated by a drastic increase in cellular vacuolation. In conclusion, the kinetics of the trafficking process of [3H]LPS clearance are regulated by apical-sinusoidal endocytotic and canalicular routes.  相似文献   

8.
Hart JW  Filner P 《Plant physiology》1969,44(9):1253-1259
The sulfur requirements of tobacco (Nicotiana tabacum L. var. Xanthi) XD cells grown in chemically defined liquid media can be satisfied by sulfate, thiosulfate, l-cyst(e)ine, l-methionine or glutathione, and somewhat less effectively by d-cyst (e) ine, d-methionine or dl-homocyst (e)ine. Sulfate uptake is inhibited after a 2 hr lag by l-cyst (e)ine, l-methionine, l-homocyst(e)ine or l-isoleucine, but not by any of the other protein amino acids, nor by d-cyst(e)ine. l-cyst(e)ine is neither a competitive nor a non-competitive inhibitor of sulfate uptake. Its action most closely resembles apparent uncompetitive inhibition. Inhibition of sulfate uptake by l-cyst(e)ine can be partially prevented by equimolar l-arginine, l-lysine, l-leucine, l-phenylalanine, l-tyrosine or l-tryptophan, but is little affected by any of the other protein amino acids. The effective amino acids are apparent competitive inhibitors of l-cyst(e)ine uptake after a 2 hr lag. Inhibition of sulfate uptake by l-methionine cannot be prevented, nor can uptake of l-methionine be inhibited by any single protein amino acid. The results suggest the occurrence of negative feedback control of sulfate assimilation by the end products, the sulfur amino acids, in cultured tobacco cells.  相似文献   

9.
The uptake of radiolabeled myo-inositol by Schwann cells isolated from the sciatic nerve of 2–4 day old rats was found to occur by a saturable, sodium-dependent phlorizin-inhibited mechanism with an estimated Km of 30μM. The system was inhibited by galactose and glucose but not by galactitol. At high concentrations of myo-inositol, a diffusion-like process appeared to be functional. The characteristics of the saturable system are very similar to those of myo-inositol uptake by the endoneural fascicle preparation of sciatic nerve.  相似文献   

10.
Liver regeneration after partial hepatectomy is a process with various types of cells involved. The role of Kupffer cells (KCs) in liver regeneration is still controversial. In this study we isolated KCs from regenerating liver and conducted cell-specific microarray analysis. The results demonstrated that the controversial role of KCs in liver regeneration could be explained with the expression patterns of TGF-α, IL-6, TNF, and possibly IL-18 during liver regeneration. IL-18 may play an important role in negative regulation of liver regeneration. The functional profiles of gene expression in KCs also indicated that KC signaling might play a negative role in cell proliferation: signaling genes were down regulated before cell division. Immune response genes in KCs were also down regulated during liver regeneration, demonstrating similar expression profiles to that of hepatocytes. The expression patterns of key genes in these functional categories were consistent with the temporal functional profiles.  相似文献   

11.
Rat adrenal cells in culture were used to study the uptake of cholesteryl linoleyl ether [( 3H]cholesteryl linoleyl ether), a nonhydrolyzable analog of cholesteryl ester. When [3H]cholesteryl linoleyl ether was added in the form of liposomes, its uptake was enhanced by adrenocorticotropin (ACTH) and by addition of milk lipoprotein lipase and interfered by heparin. When the adrenal cells were incubated with homologous [3H]cholesteryl linoleyl ether-HDL, ACTH treatment also resulted in an increase in [3H]cholesteryl linoleyl ether uptake. The uptake of [3H]cholesteryl linoleyl ether was in excess of the uptake and metabolism of 125I-labeled HDL protein and was not sensitive to heparin. Unlabeled HDL or delipidated HDL reduced very markedly the uptake of [3H]cholesteryl linoleyl ether, while addition of phosphatidylcholine liposomes had little effect. Attempts were made to deplete and enrich the adrenal cells in cholesterol and, while depletion resulted in a decrease in [3H]cholesteryl linoleyl ether-HDL uptake, enrichment of cells with cholesterol had no effect. Among the individual apolipoproteins tested, apolipoprotein A-I and the C apolipoproteins reduced [3H]cholesteryl linoleyl ether uptake, while apolipoprotein E was not effective. Since the labeled ligand studied was a lipid, these effects could not be due to an exchange of apolipoproteins, but indicated competition for binding sites. Preferential uptake of human [3H]cholesteryl linoleyl ether-HDL3 by bovine adrenal cells was found when compared to the uptake and metabolism of 125I-labeled HDL. The present results suggest that the preferential uptake of HDL cholesteryl ester (as studied with [3H]cholesteryl linoleyl ether) requires an interaction between the apolipoproteins of HDL and cell surface components.  相似文献   

12.
The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.  相似文献   

13.
Incorporation of 8 mol percent lactosylceramide into small unilamellar vesicles consisting of cholesterol and sphingomyelin in an equimolar ratio and containing [3H]inulin as a marker resulted in an increase in total liver uptake and a drastic change in intrahepatic distribution of the liposomes after intravenous injection into rats. The control vesicles without glycolipid accumulated predominantly in the hepatocytes, but incorporation of the glycolipid resulted in a larger stimulation of Kupffer-cell uptake (3.2-fold) than of hepatocyte uptake (1.2-fold). Liposome preparations both with and without lactosylceramide in which part of the sphingomyelin was replaced by phosphatidylserine, resulting in a net negative charge of the vesicles, were cleared much more rapidly from the blood and taken up by the liver to higher extents. The negative charge had, however, no influence on the intrahepatic distributions. The fast hepatic uptake of the negatively charged liposomes allowed competition experiments with substrates for the galactose receptors on liver cells. Inhibition of blood clearance and liver uptake of lactosylceramide-containing liposomes by N-acetyl-d-galactosamine indicated the involvement of specific recognition sites for the liposomal galactose residues. This inhibitory effect of N-acetyl-d-galactosamine was shown to be mainly the result of a decreased liposome uptake by the Kupffer cells, compatible with the reported presence of a galactose specific receptor on this cell type (Kolb-Bachofen et al. (1982) Cell 29, 859–866). The difference between the results on sphingomyelin-based liposomes as described in this paper and those on phosphatidylcholine-based liposomes as published previously (Spanjer and Scherphof (1983) Biochim. Biophys. Acta 734, 40–47) are discussed.  相似文献   

14.
Lipopolysaccharide-stimulated liver macrophages (Kupffer cells) secrete many physiologically active substances responsible for inflammatory reaction of the organism. The mechanism by which ivermectin, a macrocyclic lactone possessing a broad antiparasitic activity, modulates basic effects elicited by lipopolysaccharide in the primary culture of rat Kupffer cells was studied. It was found that ivermectin in the absence of endotoxin did not affect a functional state of the Kupffer cells. Preincubation of Kupffer cells with ivermectin (1 mM), however, significantly blocked response to the subsequent administration of lipopolysaccharide (1 mg/ml). In particular, secretion of tumor necrosis factor TNF alpha, nitric oxide NO and prostaglandin E2 was suppressed. Also, an LPS-triggered rise in the intracellular concentration of calcium ions was less pronounced. Removal of chloride anions from the extracellular medium completely abolished inhibitory effects of ivermectin. It is suggested that invermectin exerts its action via binding to the glycine-gated chloride receptors/channels of the Kupffer cells, which may reduce toxic reactions manifestations observed under infections caused by Gram-negative bacteria.  相似文献   

15.
Latex beads with covalently bound bovine serum albumin were prepared and coated with anti-BSA immunoglobulin G. These particles were shown to possess on their surfaces a defined quantity of the antibody with the Fc portions exposed to the medium. One homologous and two heterologous antibodies of the G class were used and compared in terms of their binding to the rat Kupffer cells and their ability to elicit the typical phagocytotic responses. These particles were phagocytosed by rat Kupffer cells and elicited synthesis of prostaglandins and superoxide anion radicals. A significant release of superoxide into the medium was observed in the presence of cytochalasin B only. The data presented here suggest that a) Fc-carrying particles can be bound to Kupffer cells and elicit responses via specific receptors; b) coating with the homologous antibody yields the most effective particles; c) superoxide release into the surrounding medium is most abundant when the particle-binding membrane areas are prevented from forming phagocytotic vesicles.  相似文献   

16.
The effects of four bile acids on cell Ca2+ were examined in suspensions of isolated rat hepatocytes. Taurolithocholate and lithocholate which inhibit bile secretion increased the cytosolic Ca2+ concentration (ED50, 25 microM), as measured by the fluorescent indicator quin2, and promoted a net loss of Ca2+ from the cells. This effect resulted from rapid mobilization of Ca2+ from an intracellular Ca2+ store. This store corresponds to the one that is permeabilized by the inositol (1,4,5)trisphosphate-dependent hormone vasopressin. However, taurolithocholate and lithocholate, unlike the hormone, did not induce a significant accumulation of inositol trisphosphate fraction in isolated hepatocytes. In addition, these agents did not alter the cell and the mitochondria membrane permeability to ions. When applied to saponin-permeabilized cells, taurolithocholate and lithocholate released Ca2+ (ED50, 20 microM) from an ATP-dependent, nonmitochondrial pool which is sensitive to inositol (1,4,5)trisphosphate. In contrast, the bile acids taurocholate and cholate, which increase bile secretion, had no effect on cell Ca2+ in intact hepatocytes or in saponin-permeabilized hepatocytes. It is suggested that taurolithocholate and lithocholate permeabilize the endoplasmic reticulum to Ca2+ and that the resulting permeabilization of this compartment may be involved in the inhibition of bile secretion in mammalian liver.  相似文献   

17.
1. Suspensions of isolated rat liver parenchymal cells incorporate [(14)C]palmitic acid into glycerides at about 40% of the rate obtained with liver slices. 2. At short time-intervals most of the incorporation is into phosphatidylcholine and this is recovered mainly in the plasma-membrane fraction. 3. At later times (5min to 2h) the [(14)C]palmitic acid is mainly found in triglyceride, but this is not recovered in the plasma-membrane fraction. 4. Addition of lysophosphatidylcholine increases incorporation of palmitic acid into both phosphatidylcholine and triglyceride, with maximum effect at about 0.1mm. 5. In vivo, 1min after injection of [(14)C]palmitic acid, radioactive phosphatidylcholine is concentrated in the plasma-membrane fraction, but the proportion present in this fraction declines rapidly. 6. The phosphatidylcholine of the plasma-membrane fraction has, at 1min after injection, a specific radioactivity 30-fold greater than that of the whole tissue. 7. This phosphatidylcholine reaches its maximum specific radioactivity before the tissue phosphatidic acid or diglyceride. 8. The phosphatidylcholine of the plasma-membrane fraction has a very rapid turnover. 9. It is proposed that the rapid formation of phospholipids in the plasma membrane is by acylation of their lyso-derivatives and the role of this process in fatty acid uptake is discussed.  相似文献   

18.
The common bile acids of rat bile (chenodeoxycholic, hyodeoxycholic, cholic, alpha-muricholic, and beta-muricholic acids) are completely separated by a new thin-layer chromatographic system.  相似文献   

19.
The effect of insulin on the in vivo glucose utilization by different hepatic cells was investigated using the euglycemic, hyperinsulinemic clamp, combined with the 2-deoxyglucose tracer technique. Rats were infused with insulin at a rate of 2.8 or 9.0 mU/min/kg for 220 min, resulting in plasma concentrations of the hormone of about 80 microU/ml and 340 microU/ml, respectively. Glucose use by the whole liver was elevated by more than 200% following insulin. However, glucose uptake by the parenchymal cells was only elevated by 50-60%. By contrast nonparenchymal cells were more responsive to insulin. Glucose uptake by endothelial cells was increased 100% and Kupffer cells displayed the most marked response to insulin showing a 3- to 6-fold increase in glucose uptake. These data indicate that the sinusoidal nonparenchymal cells are the major sites of the insulin-mediated increased glucose utilization by the liver.  相似文献   

20.
Kupffer cells are known to participate in the early events of liver injury involving lipid peroxidation. 4-Hydroxy-2,3-(E)-nonenal (4-HNE), a major aldehydic product of lipid peroxidation, has been shown to modulate numerous cellular systems and is implicated in the pathogenesis of chemically induced liver damage. The purpose of this study was to characterize the metabolic ability of Kupffer cells to detoxify 4-HNE through oxidative (aldehyde dehydrogenase; ALDH), reductive (alcohol dehydrogenase; ADH), and conjugative (glutathione S-transferase; GST) pathways. Aldehyde dehydrogenase and GST activity was observed, while ADH activity was not detectable in isolated Kupffer cells. Additionally, immunoblots demonstrated that Kupffer cells contain ALDH 1 and ALDH 2 isoforms as well as GST A4-4, P1-1, Ya, and Yb. The cytotoxicity of 4-HNE on Kupffer cells was assessed and the TD50 value of 32.5+/-2.2 microM for 4-HNE was determined. HPLC measurement of 4-HNE metabolism using suspensions of Kupffer cells incubated with 25 microLM 4-HNE indicated a loss of 4-HNE over the 30-min time period. Subsequent production of 4-hydroxy-2-nonenoic acid (HNA) suggested the involvement of the ALDH enzyme system and formation of the 4-HNE-glutathione conjugate implicated GST-mediated catalysis. The basal level of glutathione in Kupffer cells (1.33+/-0.3 nmol of glutathione per 10(6) cells) decreased significantly during incubation with 4-HNE concurrent with formation of the 4-HNE-glutathione conjugate. These data demonstrate that oxidative and conjugative pathways are primarily responsible for the metabolism of 4-HNE in Kupffer cells. However, this cell type is characterized by a relatively low capacity to metabolize 4-HNE in comparison to other liver cell types. Collectively, these data suggest that Kupffer cells are potentially vulnerable to the increased concentrations of 4-HNE occurring during oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号