Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life‐history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate–ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black‐boxing developmental and physiological mechanisms. 相似文献
Female songbirds are thought to make mate choices based on aspects of male song quality. Male canaries (Serinus canaria) produce songs with “special” syllables that have been shown to be highly salient to female listeners – eliciting high rates of sexual displays and enhanced immediate early gene (IEG) expression. Immunohistochemistry for the IEG ZENK was used to examine the effects of experience with these syllables on activity in the caudal mesopallium (CMM) and nidocaudal mesopallium (NCM), two auditory areas important in processing conspecific song. Photostimulated female canaries were housed in sound attenuated chambers and played pseudosongs containing either three special syllables or three non‐special syllables, an intro, and an outro sequence. Females that heard special syllable pseudosongs exhibited higher ZENK expression in CMM. To assess the effects of experience, photostimulated females were pair housed and exposed to playback of song with or without special syllables for 14 days. After transfer to individual housing, birds were played one of the aforementioned stimuli or silence. ZENK expression in CMM and NCM was equivalent for song with and without special syllables, but significantly lower for silence. Females who experienced song with special syllables had lower plasma estradiol concentrations after final song playback. This study indicates that CMM exhibits an IEG response bias to special syllables in limited acoustic contexts, but not in full song, which may contain additional biologically relevant information. Furthermore, estradiol concentrations may mediate changes in song responses, serving as a mechanism for modulating mate choice in differing song environments. 相似文献
Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. To further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with d-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1?μg/μL), treated with methamphetamine (0.5?mg/kg) and killed at 45?min or 2?h later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pre-treatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine. 相似文献
In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs. 相似文献
The mechanism for phenylpropanolamine (PPA)-induced anorexia has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an orexigenic agent abundant in the brain. However, molecular mechanisms behind this effect are not well known. In this study, we investigated whether activator protein-1 (AP-1) signaling was involved. Rats were daily treated with PPA for 4 days. Changes in hypothalamic NPY, c- fos , c- jun , superoxide dismutase (SOD)-1, and SOD-2 mRNA contents were measured and compared. Results showed that c- fos and c- jun mRNA levels were increased following PPA treatment, which were relevant to a reduction in NPY mRNA level. To further determine if c- fos /c- jun genes were involved in PPA anorexia, infusions of antisense oligonucleotide into cerebroventricle were performed before daily PPA treatment in freely moving rats. Results showed that either c- fos or c- jun knock down could block PPA anorexia and restore NPY mRNA content to normal level. It is suggested that AP-1 signaling may participate in the central regulation of PPA-mediated appetite suppression via the modulation of NPY gene expression. Moreover, this modulation might be partly because of the neuroprotective effect of AP-1 since SOD gene was activated during PPA treatment. 相似文献
Drosophila montana females have been found to prefer overwintered males with short and dense (high-frequency) sound pulses in the wild. In the present study males producing high-frequency song succeeded in their courtship more often than males producing low-frequency song in mate-choice experiments. Male mating success correlated with the carrier frequency of the male song recorded after, but not before, an artificial winter (flies kept 6 months at 4°C). The finding that female preference is based on a male song trait changing considerably during overwintering suggests that this trait may reflect the viability and condition of the males during the mating season of the flies in spring.相似文献
Methamphetamine and other drugs activate a small proportion of all neurons in the brain. We previously developed a fluorescence‐activated cell sorting (FACS)‐based method to characterize molecular alterations induced selectively in activated neurons that express the neural activity marker Fos. However, this method requires pooling samples from many rats. We now describe a modified FACS‐based method to characterize molecular alterations in Fos‐expressing dorsal striatal neurons from a single rat using a multiplex pre‐amplification strategy. Fos and NeuN (a neuronal marker) immunohistochemistry indicate that 5–6% of dorsal striatum neurons were activated 90 min after acute methamphetamine injections (5 mg/kg, i.p.) while less than 0.5% of neurons were activated by saline injections. We used FACS to separate NeuN‐labeled neurons into Fos‐positive and Fos‐negative neurons and assessed mRNA expression using RT‐qPCR from as little as five Fos‐positive neurons. Methamphetamine induced 3–20‐fold increases of immediate early genes arc, homer‐2, c‐fos, fosB, and its isoforms (ΔfosB and a novel isoform ΔfosB‐2) in Fos‐positive but not Fos‐negative neurons. Immediate early gene mRNA induction was 10‐fold lower or absent when assessed in unsorted samples from single dorsal striatum homogenates. Our modified method makes it feasible to study unique molecular alterations in neurons activated by drugs or drug‐associated cues in complex addiction models.
Early isolation experiments indicate that male songbirds learn their songs during an early sensitive period, although later work has shown that some open-ended learners modify songs in later years. Recent isolation experiments suggest that in some species song has a stronger genetic basis than previously thought. This study raised domestic canaries under different combinations of acoustic and social isolation and followed song development into the second year. Males raised alone in acoustic isolation developed songs with normal syllables, but larger repertoires and also produced syllables with lower repetition rates when compared to controls. The smallest repertoire occurred in males raised in a peer group. Isolate males had a smaller song control nucleus HVC than controls, but there was no effect on nucleus RA or on brain weight in general. In the second year, after introduction into a large normal colony, isolate and peer group males adjusted their syllable repertoire to normal size. In particular, the isolates reduced their repertoire even though the size of HVC showed a significant increase in volume. However, songs of isolate and peer group males still differ in repetition rate and number of single syllables in the common aviary. In contrast, control males showed low syllable turnover and no significant change in repertoire size. Nor did they show any significant change in the volumes of song control nuclei. It seems that complete isolation affects only some aspects of song and brain development, and later socialization corrects some but not all of these in the second year. 相似文献