首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.  相似文献   

3.
Nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) and are members of the neurotrophin family, a family of neurotrophic factors that also includes neurotrophin (NT) 3 and NT4/5. Neurotrophins have essential roles in the survival, development and differentiation of neurons in the central and peripheral nervous systems. Neurotrophins exert their effects by binding to corresponding receptors which are formed by the tyrosine protein kinases TrkA, TrkB and TrkC, and the low affinity neurotrophic receptor (p75NTR). In the present study, using immunohistochemistry and quantitative analysis, we have investigated immunoreactivity to BDNF, NGF, TrkB, p75NTR and TrkA in the pelvic ganglia of normal and castrated rats. Neurons of the pelvic ganglia expressed both these neurotrophins and their receptors. After castration the immunoreactivity persisted. However, the number of BDNF- and p75NTR-IR cells statistically significant decreased after castration. These results suggest that castration modulates the expression of neurotrophins and their receptors in pelvic autonomic neurons.  相似文献   

4.
5.
BACKGROUND: The function and survival of pancreatic beta-cells strongly depend on glucose concentration and on autocrine secretion of peptide growth factors. NGF and its specific receptors TrkA and p75NTR play a pivotal role in islet survival and glucose-dependent insulin secretion. We therefore investigated whether or not glucose concentration influences expression of TrkA and p75NTR in rat islets and in INS-1E beta-cells at the mRNA and protein level (INS-1E). METHODS: Gene expression of the NGF receptors TrkA and p75NTR but also of the metabolic gene liver-type pyruvate kinase (L-PK) and the neurotrophin receptors TrkB and TrkC was studied by semi-quantitative PCR and by real-time PCR in islets and INS-1E beta-cells. RESULTS: In rat islets, high glucose exposure (25 mmol/l) increased gene expression of TrkA, p75NTR and L-PK. Expression of TrkA, p75NTR and L-PK reflected insulin secretion at the respective glucose concentration. In rat INS-1E insulinoma cells, expression of L-PK and p75NTR was suppressed by low glucose as in the islets, while expression of TrkA was strongly increased by low glucose levels and thus was regulated differently than in islets. Expression of TrkB and TrkC was not regulated by glucose concentration at all. TrkA protein was regulated in the same fashion as its mRNA expression, while p75NTR protein was not significantly regulated within 24 h. CONCLUSION: Glucose interacts with gene expression of TrkA and p75NTR that are strongly involved in beta-cell growth and glucose-dependent insulin secretion. The fact that TrkA expression is regulated the opposite way in islets and in INS-1E beta-cells might reflect their specific grade of differentiation and tendency to proliferate.  相似文献   

6.
Neurotrophins mediate their signals through two different receptors: the family of receptor tyrosine kinases, Trks, and the low affinity pan-neurotrophin receptor p75. Trk receptors show more restricted ligand specificity, whereas all neurotrophins are able to bind to p75. One important function of p75 is the enhancement of nerve growth factor signaling via TrkA by increasing TrkA tyrosine autophosphorylation. Here, we have examined the importance of p75 on TrkB- and TrkC-mediated neurotrophin signaling in an MG87 fibroblast cell line stably transfected with either p75 and TrkB or p75 and TrkC, as well as in PC12 cells stably transfected with TrkB. In contrast to TrkA signaling, p75 had a negative effect on TrkB tyrosine autophosphorylation in response to its cognate neurotrophins, brain-derived neurotrophic factor and neurotrophin 4/5. On the other hand, p75 had no effect on TrkB or TrkC activation in neurotrophin 3 treatment. p75 did not effect extracellular signal-regulated kinase 2 tyrosine phosphorylation in response to brain-derived neurotrophic factor, neurotrophin 3, or neurotrophin 4/5. These results suggest that the observed reduction in TrkB tyrosine autophosphorylation caused by p75 does not influence Ras/mitogen-activated protein kinase signaling pathway in neurotrophin treatments.  相似文献   

7.
Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3-mediated downstream survival signaling in primary neurons. Crosses of p75NTR-/- and TrkA-/- mice indicate that the coincident absence of p75NTR substantially rescues TrkA-/- sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are "destined to die" by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.  相似文献   

8.
9.
Neurotrophins (NTs) belong to a family of growth factors that play a critical role in the control of skin homeostasis. NTs act through the low-affinity receptor p75NTR and the high-affinity receptors TrkA, TrkB, and TrkC. Here we show that dermal fibroblasts (DF) and myofibroblasts (DM) synthesize and secrete all NTs and express NT receptors. NTs induce differentiation of DF into DM, as shown by the expression of α-SMA protein. The Trk inhibitor K252a, TrkA/Fc, TrkB/Fc, or TrkC/Fc chimera prevents DF and DM proliferation. In addition, p75NTR siRNA inhibits DF proliferation, indicating that both NT receptors mediate DF proliferation induced by endogenous NTs. Autocrine NTs also induce DF migration through p75NTR and Trk, as either silencing of p75NTR or Trk/Fc chimeras prevent this effect, in absence of exogenous NTs. Finally, NGF or BDNF statistically increase the tensile strength in a dose dependent manner, as measured in a collagen gel through the GlaSbox device. Taken together, these results indicate that NTs exert a critical role on fibroblast and could be involved in tissue re-modeling and wound healing.  相似文献   

10.
Target-derived neurotrophins regulate neuronal survival and growth by interacting with cell-surface tyrosine kinase receptors. The p75 neurotrophin receptor (p75 NTR) is coexpressed with Trk receptors in long-range projection neurons, in which it facilitates neurotrophin binding to Trk and enhances Trk activity. Here, we show that TrkA and TrkB receptors undergo robust ligand-dependent ubiquitination that is dependent on activation of the endogenous Trk activity of the receptors. Coexpression of p75 NTR attenuated ubiquitination of TrkA and TrkB and delayed nerve growth factor-induced TrkA receptor internalization and receptor degradation. These results indicate that p75 NTR may prolong cell-surface Trk-dependent signalling events by negatively regulating receptor ubiquitination.  相似文献   

11.
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.  相似文献   

12.
Neurotrophin-regulated signalling pathways   总被引:15,自引:0,他引:15  
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.  相似文献   

13.
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.  相似文献   

14.
One of the characteristics of pancreatic cancer is its tendency to invade neural tissue. We hypothesized that the affinity of cancer cells for nerve tissue is related to the presence of growth factors in neural tissue and their receptors in cancer cells. Sections of pancreatic cancer and normal pancreatic tissue were examined by immunohistochemistry for the expression of the neurotrophins NGF, BDNF, NT-3, NT-4, and their receptors TrkA, TrkB, and TrkC, as well as the low-affinity receptor, p75NTR. TrkA expression was found in duct, islet, and cancer cells; TrkB was found in the alpha-cells of the islet only. The anti-pan-Trk antibody (TrkB3), which is presumed to recognize all three receptors, immunoreacted with duct and acinar cells in normal tissue and with cancer cells. The staining with TrkC was similar to that of TrkA. The low-affinity receptor p75NTR was expressed in the neural tissue and in scattered duct cells of the normal tissue only. Duct and acinar cells, as well as neural tissue and cancer cells, showed weak to strong immunoreactivity with NGF. NT-3 expression was noted in capillary endothelia and erythrocytes. NT-4 showed specific staining for ductule cells. The expression and distribution of neurotrophins and their receptors suggest their role in the potential of pancreatic cancer cells for neural invasion.  相似文献   

15.
Expression of neurotrophin receptors in normal and malignant B lymphocytes   总被引:3,自引:0,他引:3  
In order to define a cellular model suitable for studying, in vitro, the molecular properties and functions of neurotrophin receptors in human lymphocytes, TrkA, TrkB, TrkC and p75(NTR) expression was investigated in a panel of EBV immortalized lymphoblastoid (LCL) and Burkitt lymphoma-derived cell lines (BLs) compared to primary B lymphocytes by RT-PCR and flow cytometric analysis. Our data show that trkA and trkB are transcribed in most B cell lines of normal and malignant origin. For several of them, we also gained first evidence of trkC expression in B cells. All cell lines and primary B cells lack p75(NTR) expression. These data suggest that neurotrophin receptors expression in the B cell lines correlates to some extent with the phenotypic maturation stage and endogenous viral activity levels. Our data suggest that TrkA and TrkB, once activated, provide a partial rescue from apoptosis, whereas TrkC stimulates the progression through the cell cycle without affecting cell survival. Finally, the identification of a number of cell lines showing single expression of one of the Trk receptors has disclosed the availability of a cellular tool for further studies on their function, and mechanisms of signal transduction in the B cell moiety in the absence of p75(NTR).  相似文献   

16.
17.
Neurotrophins signal via Trk tyrosine kinase receptors and a common receptor called p75. Nerve growth factor is the cognate ligand for TrkA, brain-derived neurotrophic factor for TrkB, and neurotrophin-3 (NT-3) for TrkC. NT-3 also binds TrkA and TrkB as a heterologous ligand. All neurotrophins bind p75, which regulates ligand affinity and Trk signals. Trk extracellular domain has five subdomains: a leucine-rich motif, two cysteine-rich clusters, and immunoglobulin-like subdomains IgG-C1 and IgG-C2. The IgG-C1 subdomain is surface exposed in the tertiary structure and regulates ligand-independent activation. The IgG-C2 subdomain is less exposed but regulates cognate ligand binding and Trk activation. NT-3 as a heterologous ligand of TrkA and TrkB optimally requires the IgG-C2 but also binds other subdomains of these receptors. When p75 is co-expressed, major changes are observed; NGF-TrkA activation can occur also via the cysteine 1 subdomain, and brain-derived neurotrophic factor-TrkB activation requires the TrkB leucine-rich motif and cysteine 2 subdomains. We propose a two-site model of Trk binding and activation, regulated conformationally by the IgG-C1 subdomain. Moreover, p75 affects Trk subdomain utilization in ligand-dependent activation, possibly by conformational or allosteric control.  相似文献   

18.
Open angle glaucoma is defined as a progressive and time-dependent death of retinal ganglion cells concomitant with high intraocular pressure, leading to loss of visual field. Because neurotrophins are a family of growth factors that support neuronal survival, we hypothesized that quantitative and qualitative changes in neurotrophins or their receptors may take place early in ocular hypertension, preceding extensive cell death and clinical features of glaucoma. We present molecular, biochemical, and phenotypic evidence that significant neurotrophic changes occur in retina, which correlate temporally with retinal ganglion cell death. After 7 days of ocular hypertension there is a transient up-regulation of retinal NGF, while its receptor TrkA is up-regulated in a sustained fashion in retinal neurons. After 28 days of ocular hypertension there is sustained up-regulation of retinal BDNF, but its receptor TrkB remains unchanged. Throughout, NT-3 levels remain unchanged but there is an early and sustained increase of its receptor TrkC in Müller cells but not in retinal ganglion cells. These newly synthesized glial TrkC receptors are truncated, kinase-dead isoforms. Expression of retinal p75 also increases late at day 28. Asymmetric up-regulation of neurotrophins and neurotrophin receptors may preclude efficient neurotrophic rescue of RGCs from apoptosis. A possible rationale for therapeutic intervention with Trk receptor agonists and p75 receptor antagonists is proposed.  相似文献   

19.
Neurotrophins and cell death   总被引:1,自引:0,他引:1  
The neurotrophins - NGF, BDNF, NT-3 - are secreted proteins that play a major role in neuron survival, differentiation and axon wiring toward target territories. They do so by interacting with their main tyrosine kinase receptors TrkA, TrkB, TrkC and p75(NTR). Even though there is a general consensus on the view that neurotrophins are survival factors, there are two fundamentally different views on how they achieve this survival activity. One prevailing view is that all neurons and more generally all normal cells are naturally committed to die unless a survival factor blocks this death. This death results from the engagement of a "default" apoptotic cell program. The minority report supports, on the opposite, that neurotrophin withdrawal is associated with an active signal of cell death induced by unbound dependence receptors. We will discuss here how neurotrophins regulate cell death and survival and how this has implications not only during nervous system development but also during cancer progression.  相似文献   

20.
Functional inhibition of the p75 receptor using a small interfering RNA   总被引:6,自引:0,他引:6  
The neurotrophin receptor p75(NTR) mediates a wide variety of biological effects. Consistent with the function in controlling the survival and neurite formation, p75(NTR) is expressed during the developmental stages of the nervous system. Importantly, p75(NTR) is re-expressed in various pathological conditions and is suggested to contribute to the inhibition of neuronal regeneration and the death of the neurons. Here we develop a tool to knock down the expression of p75(NTR) by employing a small interfering RNA (siRNA). The siRNA for p75(NTR) effectively reduces the expression of endogenous p75(NTR) both in Schwann cells and dorsal root ganglion neurons in vitro. NGF-induced cell death in Schwann cells and the neurite retraction in DRG neurons induced by myelin-associated glycoprotein are attenuated by the siRNA. Inhibition of p75(NTR) in specific pathological conditions by the siRNA may provide a potential therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号