首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adverse environmental conditions can impact the life history trajectory of animals. Adaptive responses enable individuals to cope with unfavorable conditions, but altered metabolism and resource allocation can bear long‐term costs. In songbirds, early developmental stress can cause lifelong changes in learned song, a culturally transmitted trait, and nestlings experiencing developmental stress develop smaller song control nucleus HVCs. We investigated whether nutrition‐related developmental stress impacts neurogenesis in HVC, which may explain how poor nutrition leads to smaller HVC volume. We provided different quality diets (LOW and HIGH) by varying the husks‐to‐seeds ratio to zebra finch families for the first 35 days after the young hatched (PHD). At PHD14–18 and again at nutritional independence (PHD35), juveniles were injected with different cell division markers. To monitor growth, we took body measures at PHD10, 17, and 35. At PHD35 the number of newly recruited neurons in HVC and the rate of proliferation in the adjacent ventricular zone (VZ) were counted. Males raised on the LOW diet for their first weeks of life had significantly fewer new neurons in HVC than males raised on the HIGH diet. At the time when these new HVC neurons were born and labeled in the VZ (PHD17) the birds exposed to the LOW diet had significantly lower body mass. At PHD35 body mass or neuronal proliferation no longer differed. Our study shows that even transitory developmental stress can have negative consequences on the cellular processes underlying the development of neural circuits. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 107–118, 2016  相似文献   

2.
The song‐control system in the brain of songbirds is important for the production and acquisition of song and exhibits both remarkable seasonal plasticity and some of the largest neural sex differences observed in vertebrates. We measured sex and seasonal differences in two nuclei of the song‐control system of brood‐parasitic brown‐headed cowbirds (Molothrus ater) and closely‐related non‐parasitic red‐winged blackbirds (Agelaius phoeniceus). These species differ in both the development and function of song. Brown‐headed cowbirds have a larger sex difference in song than red‐winged blackbirds. Female cowbirds never sing, whereas female blackbirds do though much less than males. In cowbirds, song primarily functions in mate choice and males modify their song as they approach sexual maturity and interact with females. In red‐winged blackbirds, song is used primarily in territorial defence and is crystalized earlier in life. We found that the HVC was more likely to be discernable in breeding female blackbirds than in breeding female cowbirds. Compared to males, females had a smaller HVC and a smaller robust nucleus of the arcopallium (RA). However, females had higher doublecortin immunoreactivity (DCX+) in HVC, a measure of neurogenesis. Consistent with sex differences in song, the sex difference in RA volume was greater in cowbirds than in blackbirds. Males of both species had a smaller HVC with higher DCX+ in post‐breeding condition than in breeding condition when song is more plastic. Sex and seasonal differences in the song‐control system were closely related to variation in song in these two icterid songbirds. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1226–1240, 2016  相似文献   

3.
It is well established that auditory forebrain regions of oscine birds are essential for the encoding of species‐typical songs and are, therefore, vital for recognition of song during sociosexual interactions. Regions such as the caudal medial nidopallium (NCM) and the caudal medial mesopallium (CMM) are involved in perceptual processing of song and the formation of auditory memories. There is an additional telencephalic nucleus, however, that has also been implicated in species recognition. This nucleus is HVC, a prominent nucleus that sits at the apex of the song system, and is well known for its critical role in song learning and song production in male songbirds. Here, we explore the functional relationship between auditory forebrain regions (i.e., NCM and CMM) and HVC in female canaries (Serinus canaria). We lesion HVC and examine immediate early gene responses to conspecific song presentation within CMM and NCM to explore whether HVC can modulate auditory responses within these forebrain regions. Our results reveal robust deficits in ZENK‐ir in CMM and NCM of HVC‐lesioned females when compared with control‐ and sham‐lesioned females, indicating that functional connections exists between HVC and NCM/CMM. Although these connected regions have been implicated in song learning and production in males, they likely serve distinct functions in female songbirds that face the task of song recognition rather than song production. Identifying functional connections between HVC and auditory regions involved in song perception is an essential step toward developing a comprehensive understanding of the neural basis of song recognition. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

4.
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase‐dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α‐dihydrotestosterone (DHT) and 17 β‐estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3‐kinase (PI3K)‐Akt (a serine/threonine kinase)‐mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white‐crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.  相似文献   

5.
Only male zebra finches sing, and several brain regions implicated in song behavior exhibit marked sex differences in neuron number. In one region, the high vocal center (HVC), this dimorphism develops because the incorporation of new neurons is greater in males than in females during the first several weeks after hatching. Although estrogen (E2) exposure stimulates neuron addition in females, it is not known where (E2) acts, or to what extent sexual differentiation influences the production, specification, or survival of HVC neurons. In the present study we first reassessed sex and (E2)-induced differences in cell degeneration within the HVC using the TUNEL technique to identify cells undergoing DNA fragmentation indicative of apoptosis. HVC neuron number, as well as the density and number of TUNEL-labeled and pyknotic cells within the HVC were measured in normal 20- and 30-day-old males and females, and in 30-day-old females implanted with E2 on posthatch day 18. Although HVC neuron number was greater in males than in females, and was masculinized in E2 females, no group differences were evident in the absolute number of dying cells. These results indicate that sex differences in cell survival within the HVC do not entirely account for sexually dimorphic neuron addition to this region. Rather, sexual differentiation acts on some HVC neurons before they complete their migration and/or early differentiation. Although the migratory route of HVC neurons is not known, a large number of E2 receptor-containing cells (ER cells) reside just ventromedial to the HVC and adjacent to the proliferative ventricular zone. Next, we investigated whether these ER cells contribute to early-arising sex differences in HVC neuron addition. By combining [3H] thymidine autoradiography with immunocytochemistry for ERs, we first established that ER-expressing cells are not generated during posthatch sexually dimorphic HVC neuron addition, and thus are not young HVC neurons that transiently express ERs during their migration. Furthermore, in 25-day-old birds we found no sex difference in the density of pyknotic cells among this group of ER cells, suggesting that these cells do not promote the differential survival of HVC neuronal precursors migrating through this region. Rather, ER cells or other cell populations may establish sex differences in HVC neuron number by creating dimorphisms in cellular specification. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 61–71, 1997  相似文献   

6.
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post‐hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1315–1338, 2015  相似文献   

7.
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine‐related measures change throughout development in song‐control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song‐control regions of male zebra finches in four stages of the song learning process: pre‐subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre‐subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671–686, 2018  相似文献   

8.
Environmental contaminants have the potential to act as developmental stressors and impair development of song and the brain of songbirds, but they have been largely unstudied in this context. 2,2′,4,4′,5‐Pentabromodiphenyl ether (BDE‐99) is a brominated flame retardant congener that has demonstrated endocrine disrupting effects, and has pervaded the global environment. We assessed the effects of in ovo exposure to environmentally relevant levels of BDE‐99 on the neuroanatomy of the song‐control system in a model songbird species, the zebra finch (Taeniopygia guttata). Embryos were exposed via egg injection to a vehicle control (DMSO), 10, 100, or 1000 ng BDE‐99/g egg on the day the egg was laid. Chicks were raised to sexual maturity to investigate long‐term effects of BDE‐99 on the adult male brain. Three key song‐control nuclei (Area X, HVC, RA) all showed a dose‐dependent trend toward decreasing volume as BDE‐99 concentration increased, and birds exposed to 1000 ng/g in ovo BDE‐99 had significantly smaller song‐control nuclei volume compared to control birds. High environmental concentrations of BDE‐99 in avian tissues can be within that range and thus could affect development of the song‐control system in birds, and potentially other processes. We previously found that BDE‐99 exposure during the nestling period had no effect of on the song‐control system, although it did have significant effects on some behaviural endpoints. Taken together, these results suggest that exposure to polybrominated diphenyl ether (PBDEs) during critical developmental windows can significantly alter neurological development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

9.
In zebra finches (Taeniopygia guttata), estradiol contributes to sexual differentiation of the song system but the receptor(s) underlying its action are not exactly known. Whereas mRNA and/or protein for nuclear estrogen receptors ERα and ERβ are minimally expressed, G‐protein coupled estrogen receptor 1 (GPER1) has a much greater distribution within neural song regions and the syrinx. At present, however, it is unclear if this receptor contributes to dimorphic development of the song system. To test this, the specific GPER1 antagonist, G‐15, was intracranially administered to zebra finches for 25 days beginning on the day of hatching. In males, G‐15 significantly decreased nuclear volumes of HVC and Area X. It also decreased the muscle fiber sizes of ventralis and dorsalis in the syrinx. In females, G‐15 had no effect on measures within the brain, but did increase fiber sizes of both muscle groups. In sum, these data suggest that GPER1 can have selective and opposing influences on dimorphisms within the song system, but since not all features were affected additional factors are likely involved. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

10.
11.
The singing behavior of songbirds has been investigated as a model of sequence learning and production. The song of the Bengalese finch, Lonchura striata var. domestica, is well described by a finite state automaton including a stochastic transition of the note sequence, which can be regarded as a higher-order Markov process. Focusing on the neural structure of songbirds, we propose a neural network model that generates higher-order Markov processes. The neurons in the robust nucleus of the archistriatum (RA) encode each note; they are activated by RA-projecting neurons in the HVC (used as a proper name). We hypothesize that the same note included in different chunks is encoded by distinct RA-projecting neuron groups. From this assumption, the output sequence of RA is a higher-order Markov process, even though the RA-projecting neurons in the HVC fire on first-order Markov processes. We developed a neural network model of the local circuits in the HVC that explains the mechanism by which RA-projecting neurons transit stochastically on first-order Markov processes. Numerical simulation showed that this model can generate first-order Markov process song sequences.  相似文献   

12.
Songbirds have a specialized steroid‐sensitive network of brain nuclei, the song system, for controlling song. Most nuclei of the song system express androgen receptors, and the sensory‐motor integration nucleus High Vocal Center (HVC) alone also expresses estrogen receptors. Apart from expressing estrogen receptors in the vocal control system, songbirds are unique among birds because they have high concentrations of the estrogen‐synthesizing enzyme aromatase in the neostriatum surrounding HVC. However, the role of estrogen in controlling the development of the song structure has been scarcely investigated. In this work, we show that blocking the production of estrogen during testosterone‐induced song motor development in adult female canaries alters the song pattern compared to control females treated with testosterone only. These effects were correlated with inhibition of the expression of estrogen‐sensitive genes, such as brain‐derived nerve growth factor, in HVC. The expression of the ATP‐synthase gene, an indicator of cell activity, in HVC, and the size of HVC, were not affected by the treatment. Our results provide the first example of estrogen‐sensitive mechanisms controlling the structural features of adult birdsong. © 2002 Wiley Periodicals, Inc. J Neurobiol 54: 370–379, 2003  相似文献   

13.
Unlike the other MAP3Ks, MEKK1 (encoded by Map3k1) contains a PHD motif. To understand the role of this motif, we have created a knockin mutant of mouse Map3k1 (Map3k1mPHD) with an inactive PHD motif. Map3k1mPHD ES cells demonstrate that the MEKK1 PHD controls p38 and JNK activation during TGF‐β, EGF and microtubule disruption signalling, but does not affect MAPK responses to hyperosmotic stress. Protein microarray profiling identified the adaptor TAB1 as a PHD substrate, and TGF‐β‐ or EGF‐stimulated Map3k1mPHD ES cells exhibit defective non‐canonical ubiquitination of MEKK1 and TAB1. The MEKK1 PHD binds and mediates the transfer of Lys63‐linked poly‐Ub, using the conjugating enzyme UBE2N, onto TAB1 to regulate TAK1 and MAPK activation by TGF‐β and EGF. Both the MEKK1 PHD and TAB1 are critical for ES‐cell differentiation and tumourigenesis. Map3k1mPHD/+ mice exhibit aberrant cardiac tissue, B‐cell development, testis and T‐cell signalling.  相似文献   

14.
This paper aimed at investigating the alterations in interstitial cells of Cajal (ICCs) in the murine small intestine from 0-day to 56-day post-partum (P0–P56) by immunohistochemistry. The Kit+ ICCs, which were situated around myenteric nerve plexus (ICC-MY) formed a loose cellular network at P0 which changed into an intact one before P32. The density of ICC-MY increased from P0 to P12, and then decreased until P32. In contrast, the estimated total amount increased more than 15-fold at P32 than that at P0. Some Kit+/BrdU+ cells were observed at 24 h after one BrdU injection to the different-aged mice, and the number decreased from P2 to P24 and vanished at P32. Actually a few Kit+/BrdU+ cells can be observed at 1 h after one BrdU injection at P10, and the amount doubled at 24 h along with paired Kit+/BrdU+ cells. A number of BrdU+ ICCs were also labeled with CD34, CD44 and insulin-like growth factor I receptor. About 65% ICCs were BrdU+ at P32 after daily BrdU injection from P0. Our results indicate that an age-dependent proliferation is involved in the postnatal development of ICC-MY which increase greatly in cell numbers and proliferative ICCs may originate from ICCs progenitor cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Feng Mei and Jiang Zhu have contributed equally to this work.  相似文献   

15.
Neurogenesis continues in the brain of adult birds. These cells are born in the ventricular zone of the lateral ventricles. Young neurons then migrate long distances guided, in part, by radial cell processes and become incorporated throughout most of the telencephalon. In songbirds, the high vocal center (HVC), which is important for the production of learned song, receives many of its neurons after hatching. HVC neurons which project to the robust nucleus of the archistriatum to form part of the efferent pathway for song production, and HVC interneurons continue to be added throughout life. In contrast, Area X-projecting HVC cells, thought to be part of a circuit necessary for song learning but not essential for adult song production, are only born in the embryo. New neurons in HVC of juvenile and adult birds replace older cells that die. There is a correlation between seasonal cell turnover rates (addition and loss) and testosterone levels in adult male canaries. Available evidence suggests that steroid hormones control the recruitment and/or survival of new HVC neurons, but not their production. The functions of neuronal replacement in adult birds remain unclear. However, rates of HVC neuron turnover are highest at times of year when canaries modify their songs. Replaceable HVC neurons may participate in the modification of perceptual memories or motor programs for song production. In contrast, permanent HVC neurons could hold long-lasting song-related information. The unexpected large-scale production of neurons in the adult brain holds important clues about brain function and, in particular, about the neural control of a learned behavior—birdsong. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 585–601, 1997  相似文献   

16.
In songbirds the forebrain nuclei HVC (high vocal center) and RA (robust nucleus of the archistriatum) are larger in individuals or species that produce larger song repertoires, but the extent to which the size of these nuclei reflects a need for either producing or perceiving large repertoires is unknown. We, therefore, tested the hypothesis that species differences in the size of song nuclei reflect a commitment of “brain space” to the perceptual processing of conspecific song. The two species of marsh wren (Cistothorus palustris western and eastern) provide a good test case. Western males produce larger song repertoires, and have larger HVC and RA than do eastern males. Female marsh wrens do not sing, and if they use their song nuclei to assess conspecific male song repertoires, then we predicted that measurable cellular and nuclear parameters of HVC and RA would be greater in western than eastern female wrens. For males we confirmed that the volumes of HVC and RA, and cellular parameters of HVC, are greater in western than in eastern birds. These nuclei were also considerably larger in males than in conspecific females. Western and eastern female wrens, however, did not differ in any measured parameters of HVC or RA. Females of these wren species thus do not provide any direct evidence of anatomical specializations of song nuclei for the perceptual processing of conspecific male song. 1994 John Wiley & Sons, Inc.  相似文献   

17.
To achieve highly sensitive and comprehensive assessment of the morphology and dynamics of cells committed to the neuronal lineage in mammalian brain primordia, we generated two transgenic mouse lines expressing a destabilized (d4) Venus controlled by regulatory elements of the Neurogenin2 (Neurog2) or Gadd45g gene. In mid‐embryonic neocortical walls, expression of Neurog2‐d4Venus mostly overlapped with that of Neurog2 protein, with a slightly (1 h) delayed onset. Although Neurog2‐d4Venus and Gadd45g‐d4Venus mice exhibited very similar labeling patterns in the ventricular zone (VZ), in Gadd45g‐d4Venus mice cells could be visualized in more basal areas containing fully differentiated neurons, where Neurog2‐d4Venus fluorescence was absent. Time‐lapse monitoring revealed that most d4Venus+ cells in the VZ had processes extending to the apical surface; many of these cells eventually retracted their apical process and migrated basally to the subventricular zone, where neurons, as well as the intermediate neurogenic progenitors that undergo terminal neuron‐producing division, could be live‐monitored by d4Venus fluorescence. Some d4Venus+ VZ cells instead underwent nuclear migration to the apical surface, where they divided to generate two d4Venus+ daughter cells, suggesting that the symmetric terminal division that gives rise to neuron pairs at the apical surface can be reliably live‐monitored. Similar lineage‐committed cells were observed in other developing neural regions including retina, spinal cord, and cerebellum, as well as in regions of the peripheral nervous system such as dorsal root ganglia. These mouse lines will be useful for elucidating the cellular and molecular mechanisms underlying development of the mammalian nervous system.  相似文献   

18.
Widespread telencephalic neuronal replacement occurs throughout life in birds. We explored the potential relationship between thyroxine (T4) and cell turnover in the adult male zebra finch. We found that many cells in the zebra finch brain, including long‐projection neurons in the high vocal center (HVC), stained positively with an antibody to thyroid hormone receptors (TR). Labeling was generally weak in the ventricular zone (VZ) that gives rise to new neurons but some proliferative VZ cells and/or their progeny, identified by [3H]‐thymidine labeling, co‐labeled with anti‐TR antibody. Acute T4 treatment dramatically increased the number of pyknotic and TUNEL‐positive cells in HVC and other telencephalic regions. In contrast, degenerating cells were never observed in the archistriatum or sub‐telencephalic regions, suggesting that excess T4 augments cell death selectively in regions that show naturally occurring neuronal turnover. VZ mitotic activity was not altered shortly after acute T4 treatment at a dosage that stimulated cell death, although [3H]‐labeling intensity per cell was slightly reduced. Moreover, the incorporation rates for neurons formed shortly before or after acute hormone treatment were no different from control values. Chronic T4 treatment resulted in a reduction in the total number of HVC neurons. Thus, hyperthyroidism augmented neuronal death, which was not compensated for by neuronal replacement. Collectively, these results indicate that excess T4 affects adult neuronal turnover in birds, and raises the possibility that thyroxine plays an important role in the postnatal development of the avian brain and vocal behavior. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 323–341, 2002  相似文献   

19.
This study examined the relationship between the volumes of four song control nuclei: the high vocal center (HVC), the lateral part of the magnocellular nucleus of the anterior neostriatum (lMAN), Area X, and the robust nucleus of the archistriatum (RA), as well as syrinx mass, with several measures of song output and song complexity in male zebra finches (Taeniopygia guttata). Male zebra finches' songs were recorded in standardized recording sessions. The syrinx and brain were subsequently collected from each bird. Volumes of the song control nuclei were reconstructed by measuring the cross-sectional area of serial sections. Syrinx mass was positively correlated with RA volume. The volume of lMAN was negatively related to element repertoire size and the number of elements per phrase. We found no other correlations between brain and behavioral measures. This study, combined with others, indicates that the evidence for a general relationship among songbirds between HVC volume and song complexity is equivocal. There are clear species differences in this brain-behavior correlation. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 421–430, 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号