首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RIC8A is a noncanonical guanine nucleotide exchange factor for a subset of Gα subunits. RIC8A has been reported in different model organisms to participate in the control of mitotic cell division, cell signalling, development and cell migration. Still, the function of RIC8A in the mammalian nervous system has not been sufficiently analysed yet. Adult mice express RIC8A in the brain regions involved in the regulation of memory and emotional behaviour. To elucidate the role of RIC8A in mammalian neurogenesis we have inactivated Ric8a in neural precursor cells using Cre/Lox system. As a result, the conditional knockout mice were born at expected Mendelian ratio, but died or were cannibalized by their mother within 12 h after birth. The cerebral cortex of the newborn Nes;Ric8aCKO mice was thinner compared to littermates and the basement membrane was discontinuous, enabling migrating neurons to invade to the marginal zone. In addition, the balance between the planar and oblique cell divisions was altered, influencing the neuron production. Taken together, RIC8A has an essential role in the development of mammalian nervous system by maintaining the integrity of pial basement membrane and modulating cell division. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 984–1002, 2015  相似文献   

2.
Cortical development is dependent on the timely production and migration of neurons from neurogenic sites to their mature positions. Mutations in several receptors for extracellular matrix (ECM) molecules and their downstream signaling cascades produce dysplasia in brain. Although mutation of a critical binding site in the gene that encodes the ECM molecule laminin γ1 (Lamc1) disrupts cortical lamination, the ECM ligand(s) for many ECM receptors have not been demonstrated directly in the cortex. Several isoforms of the heterotrimeric laminins, all containing the β2 and γ3 chain, have been isolated from the brain, suggesting they are important for CNS function. Here, we report that mice homozygous null for the laminin β2 and γ3 chains exhibit cortical laminar disorganization. Mice lacking both of these laminin chains exhibit hallmarks of human cobblestone lissencephaly (type II, nonclassical): they demonstrate severe laminar disruption; midline fusion; perturbation of Cajal‐Retzius cell distribution; altered radial glial cell morphology; and ectopic germinal zones. Surprisingly, heterozygous mice also exhibit laminar disruption of cortical neurons, albeit with lesser severity. In compound null mice, the pial basement membrane is fractured, and the distribution of a key laminin receptor, dystroglycan, is altered. These data suggest that β2 and γ3‐containing laminins play an important dose‐dependent role in development of the cortical pial basement membrane, which serves as an attachment site for Cajal‐Retzius and radial glial cells, thereby guiding neural development. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

3.
Evolutionarily conserved Akirin nuclear proteins interact with chromatin remodeling complexes at gene enhancers and promoters, and have been reported to regulate cell proliferation and differentiation. Of the two mouse Akirin genes, Akirin2 is essential during embryonic development, with known in vivo roles in immune system function and the formation of the cerebral cortex. Here we demonstrate that Akirin2 is critical for mouse myogenesis, a tightly regulated developmental process through which myoblast precursors fuse to form mature skeletal muscle fibers. Loss of Akirin2 in somitic muscle precursor cells via Sim1‐Cre‐mediated excision of a conditional Akirin2 allele results in neonatal lethality. Mutant embryos exhibit a complete lack of forelimb, intercostal, and diaphragm muscles due to extensive apoptosis and loss of Pax3‐positive myoblasts. Severe skeletal defects, including craniofacial abnormalities, disrupted ossification, and rib fusions are also observed, attributable to lack of skeletal muscles as well as patchy Sim1‐Cre activity in the embryonic sclerotome. We further show that Akirin2 levels are tightly regulated during muscle cell differentiation in vitro, and that Akirin2 is required for the proper expression of muscle differentiation factors myogenin and myosin heavy chain. Our results implicate Akirin2 as a major regulator of mammalian muscle formation in vivo.  相似文献   

4.
RIC‐3 enhances the functional expression of certain nicotinic acetylcholine receptors (nAChRs) in vertebrates and invertebrates and increases the availability of functional receptors in cultured cells and Xenopus laevis oocytes. Maximal activity of RIC‐3 may be cell‐type dependent, so neither mammalian nor invertebrate proteins is optimal in amphibian oocytes. We cloned the X. laevis ric‐3 cDNA and tested the frog protein in oocyte expression studies. X. laevis RIC‐3 shares 52% amino acid identity with human RIC‐3 and only 17% with that of Caenorhabditis elegans. We used the C. elegans nicotinic receptor, ACR‐16, to compare the ability of RIC‐3 from three species to enhance receptor expression. In the absence of RIC‐3, the proportion of oocytes expressing detectable nAChRs was greatly reduced. Varying the ratio of acr‐16 to X. laevis ric‐3 cRNAs injected into oocytes had little impact on the total cell current. When X. laevis, human or C. elegans ric‐3 cRNAs were co‐injected with acr‐16 cRNA (1 : 1 ratio), 100 μM acetylcholine induced larger currents in oocytes expressing X. laevis RIC‐3 compared with its orthologues. This provides further evidence for a species‐specific component of RIC‐3 activity, and suggests that X. laevis RIC‐3 is useful for enhancing the expression of invertebrate nAChRs in X. laevis oocytes.  相似文献   

5.
Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8a F/F) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre +/- Ric8 lacZ/F mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre +/- Ric8a lacZ/F mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype.  相似文献   

6.
7.
The distribution of calcitonin gene-related peptide (CGRP) was examined in skeletal muscles of fore and hind limb as well as in oral and cranio-facial regions of the degenerating muscle (dmu) mouse, which harbours a null mutation in the voltage-gated sodium channel gene Scn8a. In limb, oral and cranio-facial muscles of wild type mice, only a few motor endplates contained CGRP-immunoreactivity. However, many CGRP-immunoreactive motor endplates appeared in the triceps brachii muscle, the biceps brachii muscle, the brachialis muscle, and the gastrocnemius muscle of dmu mice. CGRP-immunoreactive density of motor endplates in the skeletal muscles was also elevated by the mutation. In these muscles, the atrophy of muscle fibers could be detected and the density of cell nuclei in the musculature increased. In the flexor digitorum profundus muscle, the flexor digitorum superficialis muscle, and the soleus muscle as well as in oral and cranio-facial muscles, however, the distribution of CGRP-immunoreactivity was barely affected by the mutation. The morphology of muscle fibers and the distribution of cell nuclei within them were also similar in wild type and dmu mice. In the lumbar spinal cord of dmu mice, CGRP-immunoreactive density of spinal motoneurons increased. These findings suggest that the atrophic degeneration in some fore and hind limb muscles of dmu mice may increase CGRP expression in their motoneurons.  相似文献   

8.
Myostatin is a dominant inhibitor of skeletal muscle development and growth. As transgenic over‐expression of myostatin propeptide dramatically enhanced muscle mass, we hypothesized that administration of myostatin propeptide will increase muscle growth. In this study, the wild‐type form of porcine myostatin propeptide and its mutated form at the cleavage site of metalloproteinases of BMP‐1/TLD family were produced from insect cells. In vitro A204 cells reporter assays showed that both wild‐type and the mutated propeptides depressed myostatin activity. The recombinant propeptides at four‐fold myostatin concentration can effectively block myostatin function during co‐incubation with A204 cells. In particular, the mutated propeptide appeared much more effective than wild‐type propeptide over a long period during the in vitro co‐incubation. Administration of the mutated propeptide to neonatal mice at the age of 11 and 18 days was tested and showed significant increase in growth performance by 11–15% from the age of 25 to 57 days (P < 0.05). The major skeletal muscles of mice that were injected with mutated propeptide were 13.5–24.8% heavier than the control group (P < 0.05) as a result of muscle fiber hypertrophy. In conclusion, administration of the mutated myostatin propeptide during the neonatal period is an effective way for promoting muscle growth. Mol. Reprod. Dev. 77: 76–82, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
12.
Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility.  相似文献   

13.
The patterns of skeletal muscle precursor cell replication after crush injury were compared by the use of autoradiographic techniques, in young (4-week-old) and old (39-week-old) BALBc and SJL/J mice. Similar comparisons were made between cut and crush lesions in old BALBc muscle. Muscle precursor cell replication commenced at 18–24 h after injury in both young and old muscles from both strains of mice. In young BALBc muscle the peak of myogenic activity at 60 h was 36 h earlier than in old mice. SJL/J muscle responded more rapidly than did BALBc: in young SJL/J the peak myogenic activity was at 46 h (14 h earlier than in young BALBc muscle), and in old SJL/J muscle the peak activity at 72 h was 24 h earlier than in old BALBc muscle. In all mice (both young and old) myogenic cell replication was substantially reduced by 120 h after injury. A comparison of the timing of muscle precursor cell replication in cut and crush lesions in old BALBc mice revealed a more rapid response in the cut lesion: this difference between the lesions in comparable with data from identical lesion in 6-8-week-old BALBc mice (McGeachie and Grounds 1987). However, the peak of myogenic replication in the older mice in the present study was some 26–36 h later than in the younger 6-8-week-old mice. These experiments show that, whilst muscle precursor cell replication commences at approximately the same time (about 24 h) after injury in young and old mice, the peak level of activity is delayed by some 24–36 h in old mice. In addition, the SJL/J mouse strain responds more rapidly and prolifically to muscle injury than does the BALBc strain.  相似文献   

14.
In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2β-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.  相似文献   

15.
Creatine transporter (CrT; SLC6A8) deficiency (CTD) is an X‐linked disorder characterized by severe cognitive deficits, impairments in language and an absence of brain creatine (Cr). In a previous study, we generated floxed Slc6a8 (Slc6a8 flox) mice to create ubiquitous Slc6a8 knockout (Slc6a8?/y) mice. Slc6a8?/y mice lacked whole body Cr and exhibited cognitive deficits. While Slc6a8?/y mice have a similar biochemical phenotype to CTD patients, they also showed a reduction in size and reductions in swim speed that may have contributed to the observed deficits. To address this, we created brain‐specific Slc6a8 knockout (bKO) mice by crossing Slc6a8flox mice with Nestin‐cre mice. bKO mice had reduced cerebral Cr levels while maintaining normal Cr levels in peripheral tissue. Interestingly, brain concentrations of the Cr synthesis precursor guanidinoacetic acid were increased in bKO mice. bKO mice had longer latencies and path lengths in the Morris water maze, without reductions in swim speed. In accordance with data from Slc6a8 ?/y mice, bKO mice showed deficits in novel object recognition as well as contextual and cued fear conditioning. bKO mice were also hyperactive, in contrast with data from the Slc6a8 ?/y mice. The results show that the loss of cerebral Cr is responsible for the learning and memory deficits seen in ubiquitous Slc6a8?/y mice.  相似文献   

16.
Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.  相似文献   

17.
《Developmental neurobiology》2017,77(10):1175-1187
Cyclin‐dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5‐null Purkinje cells and Purkinje cells in Wnt1cre‐mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre‐mediated p35; p39 double KO (L7cre‐p35f/f; p39–/–) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell‐autonomous in vivo . We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5‐null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non‐cell‐autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain‐derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre‐p35f/f; p39–/– mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell‐autonomous and non‐cell‐autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175–1187, 2017  相似文献   

18.
BACKGROUND: The antiepileptic drug valproic acid (VPA) is well known to cause neural tube and skeletal defects in both humans and animals. The amidic VPA analogues valpromide (VPD) and valnoctamide (VCD) have much lower teratogenicity than VPA inducing exencephaly in mice. The objective of this study was to investigate the teratogenic effects of VPA, VPD, and VCD on the skeleton of NMRI mice. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of VPA (400 and 800 mg/kg), VPD (800 mg/kg), or VCD (800 mg/kg) on the morning of gestation day (GD) 8. Cesarean section was carried out on GD 18. Live fetuses were double‐stained for bone and cartilage and their skeletons were examined. RESULTS: Significant increases in fetal loss and exencephaly rate were observed with VPA at 800 mg/kg compared to the vehicle control. There were no significant differences between either VPD or VCD and the control groups for any parameter at cesarean section. A number of abnormalities were dose‐dependently induced at high incidences by VPA in both the cartilage and bone of vertebrae, ribs and sternum. In contrast, lower frequencies of abnormality were exhibited with VPD and VCD than VPA in all skeletons affected by VPA. CONCLUSIONS: These findings clearly indicate that VPD and VCD are distinctly less teratogenic than VPA in the induction of not only neural tube defects, but also skeletal abnormalities. A structure‐teratogenicity relationship of VPA on the skeleton is suspected. Birth Defects Res B 71:47–53, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

19.
Aralar is a mitochondrial calcium-regulated aspartate-glutamate carrier mainly distributed in brain and skeletal muscle, involved in the transport of aspartate from mitochondria to cytosol, and in the transfer of cytosolic reducing equivalents into mitochondria as a member of the malate-aspartate NADH shuttle. In the present study, we describe the characteristics of aralar-deficient (Aralar-/-) mice, generated by a gene-trap method, showing no aralar mRNA and protein, and no detectable malate-aspartate shuttle activity in skeletal muscle and brain mitochondria. Aralar-/- mice were growth-retarded, exhibited generalized tremoring, and had pronounced motor coordination defects along with an impaired myelination in the central nervous system. Analysis of lipid components showed a marked decrease in the myelin lipid galactosyl cerebroside. The content of the myelin lipid precursor, N-acetylaspartate, and that of aspartate are drastically decreased in the brain of Aralar-/- mice. The defect in N-acetylaspartate production was also observed in cell extracts from primary neuronal cultures derived from Aralar-/- mouse embryos. These results show that aralar plays an important role in myelin formation by providing aspartate for the synthesis of N-acetylaspartate in neuronal cells.  相似文献   

20.
During perinatal development, proprioceptive muscle afferents are quite sensitive to nerve injury. Here, we have used transgenic mice that overexpress neurotrophin‐3 (NT‐3) in skeletal muscle (myo/NT‐3 mice) to explore whether NT‐3 plays a neuroprotective role for perinatal muscle afferents following nerve injury. Measurements of NT‐3 mRNA using RT‐PCR revealed that levels of endogenous NT‐3 mRNA in wild‐type muscles remained constant during the first postnatal week following nerve crush or nerve section on postnatal day (PN) 1. In comparison, myo/NT‐3 mice had significantly elevated levels of NT‐3 mRNA that were maintained or increased following injury. To assess whether muscle‐derived NT‐3 could prevent injury‐induced neuronal death, neuron survival in the DRG was analyzed in mice 5 days after sciatic nerve crush on PN3. Retrograde prelabeling of muscle afferents and parvalbumin immunocytochemistry both revealed that overexpression of NT‐3 in muscle significantly reduced neuronal loss following injury. Similar neuroprotective effects of NT‐3 were observed in wild‐type mice injected with exogenous NT‐3 in the gastrocnemius muscles. To test whether NT‐3 could prevent muscle spindle degeneration, spindle number and morphology were assessed 3 weeks after sciatic nerve crush or section on PN1. No spindles were present in either wildtype or myo/NT‐3 muscles after nerve section, demonstrating that NT‐3 overexpression cannot maintain spindles following complete denervation. Moreover, NT‐3 overexpression could not prevent moderate spindle loss in muscle and did not stimulate new spindle formation following nerve crush. Our results demonstrate that in addition to its early actions on sensory neuron generation and naturally occurring cell death, NT‐3 has important neuroprotective effects on muscle afferents during postnatal development. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 198–208, 2002; DOI 10.1002/neu.10024  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号