首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Loss-of-heterozygosity (LOH) studies have implicated one or more chromosome 11 tumor-suppressor gene(s) in the development of cutaneous melanoma as well as a variety of other forms of human cancer. In the present study, we have identified multiple independent critical regions on this chromosome by use of homozygosity mapping of deletions (HOMOD) analysis. This method of analysis involved the use of highly polymorphic microsatellite markers and statistics to identify regions of hemizygous deletion in unmatched melanoma cell line DNAs. Regions of loss were defined by the presence of an extended region of homozygosity (ERH) at > or =5 adjacent markers and having a statistical probability of < or =.001. Significant ERHs were similar in nature to deletions identified by LOH analyses performed on uncultured melanomas, although a higher frequency of loss (24 [60%] of 40 vs. 16 [34%] of 47) was observed in the cell lines. Overall, six small regions of overlapping deletions (SROs) were identified on chromosome 11 flanked by the markers D11S1338/D11S907 (11p13-15.5 [SRO1]), D11S1344/D11S11385 (11p11.2 [SRO2]), D11S917/D11S1886 (11q21-22.3 [SRO3]), D11S927/D11S4094 (11q23 [SRO4]), AFM210ve3/D11S990 (11q24 [SRO5]), and D11S1351/D11S4123 (11q24-25 [SRO6]). We propose that HOMOD analysis can be used as an adjunct to LOH analysis in the localization of tumor-suppressor genes.  相似文献   

2.
Cutaneous malignant melanoma (CMM) is often familial, but the mode of inheritance and the chromosomal location of melanoma susceptibility locus are controversial. Identification of a 34-year-old woman with eight primary malignant melanomas, multiple atypical moles, and a de novo constitutional cytogenetic rearrangement involving chromosomes 5p and 9p suggested the presence of a melanoma predisposition gene at one of these locations. A high-resolution karyotype showed a partial deletion of a dark-staining Giemsa band, either 5p14 or 9p21. The patient was heterozygous for five 5p14 RFLPs. In situ hybridization with D9S3 indicated that this 9p21 marker was deleted. Gene dosage studies demonstrated the deletion of two more distal 9p21 markers, D9S126 and IFNA. In addition, she was hemizygous for the more proximal 9p21 short tandem-repeat polymorphism at D9S104. D9S18, D9S19, and D9S33 were retained, localizing the deletion to 9p21 between D9S19 on the proximal side and D9S33 on the distal side. Pulsed-field gel electrophoresis with D9S19 and D9S33 did not reveal any junction fragments in the patient's DNA. This germ-line deletion suggests that mutations in a 9p21 gene may initiate melanoma tumorigenesis.  相似文献   

3.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

4.
The loss of genetic material on chromosome 10q is frequent in different tumors and particularly in malignant gliomas. We analyzed 90 of these tumors and found loss of heterozygosity (LOH) in >90% of the informative loci in glioblastoma multiforme (GBM). Initial studies restricted the common LOH region to 10q24-qter. Subsequently, the study of a pediatric GBM suggested D10S221 and D10S209, respectively, as centromeric and telomeric markers of a 4-cM LOH region. It is interesting to note that, in one subset of cells from this tumor, locus D10S209 seems involved in the allelic imbalance of a larger region, with D10S214 as telomeric marker. This 17-cM region contains the D10S587-D10S216 interval of common deletion recently defined on another set of gliomas.  相似文献   

5.
Confirmation of chromosome 9p linkage in familial melanoma   总被引:11,自引:3,他引:8       下载免费PDF全文
Malignant melanoma occurs as a familial cancer in 5%–10% of cases where it segregates in a manner consistent with autosomal dominant inheritance. Evidence from cytogenetics, fine-mapping studies of deletions in melanomas, and recent linkage studies supports the location of a human melanoma predisposition gene on the short arm of chromosome 9. We have carried out linkage analysis using the 9p markers IFNA and D9S126 in 26 Australian melanoma kindreds. Multipoint analysis gave a peak lod score of 4.43, 15 cM centromeric to D9S126, although a lod score of 4.13 was also found 15 cM telomeric of IFNA. These data confirm the existence of a melanoma susceptibility gene on 9p and indicate that this locus most probably lies outside of the IFNA–D9S126 interval. No significant heterogeneity was found between families, when either pairwise or multipoint data were analyzed using HOMOG.  相似文献   

6.
The neuronal ceroid lipofuscinoses (NCL; Batten disease) are a collection of autosomal recessive disorders characterized by the accumulation of autofluorescent lipopigments in the neurons and other cell types. Clinically, these disorders are characterized by progressive encephalopathy, loss of vision, and seizures. CLN3, the gene responsible for juvenile NCL, has been mapped to a 15-cM region flanked by the marker loci D16S148 and D16S150 on human chromosome 16. CLN2, the gene causing the late-infantile form of NCL (LNCL), is not yet mapped. We have used highly informative dinucleotide repeat markers mapping between D16S148 and D16S150 to refine the localization of CLN3 and to test for linkage to CLN2. We find significant linkage disequilibrium between CLN3 and the dinucleotide repeat marker loci D16S288 (chi 2(7) = 46.5, P < .005), D16S298 (chi 2(6) = 36.6, P < .005), and D16S299 (chi 2(7) = 73.8, P < .005), and also a novel RFLP marker at the D16S272 locus (chi 2(1) = 5.7, P = .02). These markers all map to 16p12.1. The D16S298/D16S299 haplotype "5/4" is highly overrepresented, accounting for 54% of CLN3 chromosomes as compared with 8% of control chromosomes (chi 2 = 117, df = 1, P < .001). Examination of the haplotypes suggests that the CLN3 locus can be narrowed to the region immediately surrounding these markers in 16p12.1. Analysis of D16S299 in our LNCL pedigrees supports our previous finding that CLN3 and CLN2 are different genetic loci. This study also indicates that dinucleotide repeat markers play a valuable role in disequilibrium studies.  相似文献   

7.
Molecular cytogenetic and LOH analyses of non-small cell lung cancer (NSCLC) have shown frequent allelic deletions in a variety of chromosomes where tumour suppressor genes are located. Allelic loss at 9p21 (p16 locus), 17p13 (p53) and 5q21(APC) has been frequently described in NSCLC and has also been described in premalignant epithelial lesions of the bronchus and normal bronchial cells. These findings suggest that a tissue field of somatic genetic alterations precedes the histopathological phenotypic changes of carcinoma. Similar changes have been described in oral and laryngeal epithelial tumours associated with smoke exposure. We previously reported frequent LOH at 5q21, 9p21 and TP53 in tumor cells and peritumoral normal bronchial cells from surgically resected NSCLC. We now analyze 96 cases of normal oral exfoliative cytology in which normal epithelial cells were obtained: 43 cases from smoker patients with NSCLC diagnosis, 33 smoker patients with no evidence of malignancy and 20 non-smoker patients with no evidence of tumour. All groups had a similar age and sex distribution. PCR amplification was performed utilising the specific markers D5S346, D9S157 and TP53. In normal oral mucosae cells from patients with NSCLC, we found that 21% of the informative cases showed LOH at any of the three analyzed loci distributed as follows: 14.3% of the informative cases showed LOH at 5q21, 7.7% at 9p21 and 22.2% at TP53. Within the smoker risk group only one case (4% of the informative cases) showed LOH at TP53, while no LOH was found at 5q21 or 9p21. No LOH was found in non-smokers. In conclusion, our results show that a significant number of patients with NSCLC have LOH at TP53, 5q21 and 9p21 in normal oral mucosae, while LOH at these loci is unusual in similar cells obtained from patients with no evidence of malignancy. Our study demonstrates that LOH studies can detect smoker patients with a mutated genotype in normal epithelial cells. Further prospective studies may confirm whether LOH studies can detect patients with a higher risk of NSCLC.  相似文献   

8.
Ruiz A  Nadal M  Puig S  Estivill X 《Gene》1999,239(1):155-161
Cutaneous malignant melanoma (CMM) is a common skin cancer. About 50% of CMM sporadic tumours have lost one copy of the chromosome 9p21 region. To identify genes involved in the initiation and/or progression of CMM we have characterised the 9p21 melanoma deleted region and screened the human expressed sequence tag (EST) databases (dbEST) to search for expressed genes. We have identified the gene that encodes the human orthologue of the rat phospholipase A2 activating protein (PLAP). PLAP was considered a potential candidate to be involved in malignant melanoma because it maps to the critical region for CMM and because the PLA2 gene has been identified as a modifier of the APC gene, responsible for the adenomatous polyposis phenotype in the mouse. PLAP encodes a protein of 738 amino acids and has a high DNA (90%) and protein (97%) sequence similarity with the rat and mouse PLAP protein. PLAP has a region of WD40 repeats in the amino-terminus, which allows us to include this protein in the superfamily of beta-transducin proteins. Northern blot hybridisation gave a fragment of 4.5 kb, with higher expression in heart compared to other tissues. PLAP was localised at chromosome 9p21, between marker AFM218xg11 and TEK. SSCP analysis of the coding region of PLAP revealed no variants in the studied samples, but one of six CMM samples analysed by RT-PCR showed specific inactivation of PLAP. Despite PLAP's important role in mediating several cellular responses and its localisation to the chromosome 9p21 region deleted in CMM, it is unlikely that point mutations or deletions in the coding region of PLAP are responsible for the initiation or progression of CMM. Further studies on PLAP inactivation should be performed to clarify its potential involvement in CMM.  相似文献   

9.
Rat ovarian surface epithelial cells transformed spontaneously in vitro have been found to have homozygous deletions of the interferon alpha (IFNA) gene. This suggests that inactivation of a tumor-suppressor gene in this region may be crucial for the development of ovarian cancer. We therefore used microsatellite markers and Southern analysis to examine the homologous region in humans--the short arm of chromosome 9--for deletions in sporadic ovarian adenocarcinomas and ovarian tumor cell lines. Loss of heterozygosity occurred in 34 (37%) of 91 informative sporadic tumors, including some benign, low-malignant-potential and early-stage tumors, suggesting that it is an early event in the development of ovarian adenocarcinoma. Furthermore, homozygous deletions on 9p were found in 2 of 10 independent cell lines. Deletion mapping of the tumors and lines indicates that the candidate suppressor gene inactivated as a consequence lies between D9S171 and the IFNA locus, a region that is also deleted in several other tumors and that contains the melanoma predisposition gene, MLM.  相似文献   

10.
BACKGROUND: Patients, who had an upper aerodigestive tract malignancy, have a high incidence of succeeding tumor development. This has been attributed to the role of "field cancerization" in carcinogenesis. The aim of this study was analysis of loss of heterozygosity (LOH) in the regions frequently lost during the course of head and neck squamous cell carcinomas (HNSCC), especially at early stages, which could answer the clinicians' question, if LOH analysis has any "predictive" value in relation to tumor occurrence. MATERIAL AND METHODS: Sixty-five larynx cancer patients were examined for loss of heterozygosity on 3p, 7q, 8p, 9p and 18q chromosomal arms with the use of 12 microsatellite markers. The material from a single patient consisted of blood, tumor, safe margin and one or two clinically unchanged mucosal samples. During follow up, the material from brush specimens (14 patients) as well as laryngeal swabs (4 patients) was also examined. RESULTS: The highest frequency of LOH was detected for marker D3S1234 in tumor tissues (29%). Analysis of margin samples (b) revealed low LOH frequencies (2-5%) and complete retention of heterozygosity for markers: D3S1234, D7S486, D8S261, D8S264, D9S171 and D18S46. Similarly, for normal appearing mucosa from upper part of larynx (c) frequencies of LOH were low (2-6%), with the complete retention of heterozygosity for markers: D3S1284, D3S1304, D3S1234, D8S264 and D9S1870. We did not detect any LOH in the material of normal appearing mucosa from tracheostoma region (d). During follow up, LOH was detected for eight markers, with the highest incidence for markers D18S46 (six cases), D7S486 (four cases) and D3S1300 (three cases). CONCLUSIONS: The data, obtained during this investigation, did not reveal the predictive value of LOH with respect to local relapse occurrence in laryngeal cancer patients. However, time of follow up did not reach 5 years, so that further clinical monitoring should be conducted.  相似文献   

11.
We examined the relationship between cutaneous malignant melanoma/dysplastic nevi (CMM/DN) and chromosome 9p in 13 pedigrees with two or more living cases of invasive melanoma. We used two highly informative (CA)n repeats, D9S126 and IFNA, previously implicated in familial malignant melanoma (MLM), to conduct linkage analysis. Three analyses were performed: (1) CMM alone--all individuals without either confirmed melanoma or borderline lesions were considered unaffected (model A); (2) CMM/DN with both variable age at onset and sporadics (model B); and (3) CMM affecteds only--all individuals either without confirmed melanoma or with borderline lesions were designated "unknown" (model C). There was significant evidence for linkage to IFNA in all three models. For CMM alone, the maximum lod score (Zmax) was 4.36 at theta = .10 for model A and 3.39 at theta = .10 for model C. For CMM/DN (model B), Zmax = 3.05 at theta = .20. There was no significant evidence for linkage between CMM alone or CMM/DN and chromosome 9p marker D9S126. In addition, there was significant evidence for heterogeneity when a homogeneity test allowing for linkage to chromosome 9p or chromosome 1p or neither region was used. These results suggest that there is an MLM susceptibility locus on chromosome 9p but that familial melanoma is heterogeneous and not all families with CMM/DN are linked to a locus in this region.  相似文献   

12.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6 Mb to map various LOH endpoints on the 45 Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I–IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15–20 Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

13.
Mazurenko  N. N.  Beliakov  I. S.  Bliyev  A. Yu.  Guo  Z.  Hu  X.  Vinokourova  S. V.  Bidzhieva  B. A.  Pavlova  L. S.  Ponten  J.  Kisseljov  F. L. 《Molecular Biology》2003,37(3):404-411
Loss of heterozygosity (LOH) analysis on chromosome 6 was performed to define the genetic changes that occur in the development of squamous cell cervical cancer (SCC). Detailed analysis with 28 microsatellite markers revealed several loci with high frequency of deletions at the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16–q21, 6q23–q24, 6q25, 6q27) arms of chromosome 6. Examination of microdissected 37 SCC and 22 cervical intraepithelial neoplasias (CIN) revealed allelic deletions in the HLA class I–III region (6p22–p21.3) and at subtelomeric locus 6p25-ter in more than 40% of CIN. By a combination of LOH and microdissection of multiple samples from the same tumor sections, we studied the intratumoral genetic heterogeneity of SCC, and identified clonal and subclonal allelic deletions. Half of SCC had clonal allelic deletion at D6S273, which is localized in intron of Ly6G6D (MEGT1) gene mapped in the HLA class III region. The LOH frequency at 6q in CIN cases did not exceed 20%. Allelic deletions at two loci, 6q14 and 6q16–q21, were for the first time associated with invasion and metastasis in SCC.  相似文献   

14.
HLA class I loss or down-regulation is a widespread mechanism used by tumor cells to avoid tumor recognition by cytotoxic T lymphocytes, and thus favor tumor immune escape. Multiple mechanisms are responsible for these HLA class I alterations. In different epithelial tumors, loss of heterozygosity (LOH) at chromosome region 6p21.3, leading to HLA haplotype loss, occurs in 6–50% of all cases depending on the tumor entity. In this paper we report the frequency of LOH at 6p21 in 95 colorectal carcinomas (CRC) previously analyzed for altered HLA class I expression with immunohistological techniques. We used PCR microsatellite amplification of selected STR markers located on Chromosome 6 to identify LOH with DNA from microdissected tumor tissues and the surrounding stroma. Sequence-specific oligonucleotide analysis was performed in microdissected stroma and tumor cells for HLA typing, and to detect HLA haplotype loss. A high frequency (40%) of HLA haplotype loss was found in CRC. Eight tumors showed microsatellite instability. We sometimes observed two or more mechanisms responsible for HLA alteration within the same HLA-altered phenotype, such as LOH and HLA class I total loss. In 25 tumors (26%) no HLA class I alteration could be identified. These data are potentially relevant for CRC patients undergoing T-cell-based immunotherapy.  相似文献   

15.
Allelic deletions along the short arm of human chromosome 3 were mapped in 57 pairs of DNA samples from tumor and normal tissue of renal carcinoma patients in order to locate potential tumor suppressor genes. Twenty highly polymorphic microsatellite markers were used for deletion mapping. Allelic deletions were found in most of the samples (91%). Extended terminal deletions (56%) prevailed over shorter internal and multiple deletions and dominated (65%) in the most aggressive histopathological kidney cancer subtype, clear-cell carcinoma. Frequency analysis of loss of heterozygosity allowed detection of the human chromosome 3 regions most essential for renal carcinomas: the region adjacent to the gene VHL(3p26–p25), the region of homozygous deletions AP20 (3p22–p21.33), and a new region between markers D3S2420 and D3S2409 (3p21.31, 2.2 Mbp).  相似文献   

16.
Neuroblastoma is a childhood neural crest tumour, genetically characterized by frequent deletions of the short arm of chromosome 1 and amplification of N-myc. Here we report the first evidence for a neuroblastoma tumour suppressor locus on 4pter. Cytogenetically we demonstrated rearrangements of 4p in 7 out of 26 evaluable tumours (27%). Subsequent analysis of loss of heterozygosity (LOH) by Southern blotting revealed allelic loss of 4p in 16/82 (19.5%) informative neuroblastomas. Taken together cytogenetic and Southern blot analyses showed loss of 4p in 20/86 neuroblastomas analysed (23%). The common deleted region was bordered by the probe D4S 123 and encompassed the distal 34 cM of 4p. We found no evidence for genomic imprinting of the 4p locus as the 4p alleles lost in the tumours were of random maternal and paternal origin. LOH4p was found at all disease stages and in every age group. Furthermore LOH4p was present both in cases with and without LOHIp and amplification of N-myc.  相似文献   

17.
满晓辉  徐岩  王振宁  吕志  徐米多  姜莉  罗阳  徐惠绵  张学 《遗传》2006,28(6):641-645
目的 研究贲门癌中染色体8p21-p23杂合性丢失的情况。方法 采用激光捕获显微切割技术获得均质的肿瘤细胞及正常的胃粘膜细胞,多重置换扩增技术扩增捕获细胞的基因组DNA。PCR结合硝酸银染色方法分析19例贲门癌染色体8p21-p23的杂合性丢失。结果 在贲门癌中染色体8p21-p23的缺失频率非常高(63.2%),我们确定了一个最小丢失区域. 结论 进一步明确此最小丢失区域内的抑癌基因将有助于贲门癌发生机制的阐明。  相似文献   

18.
目的:分析人肝癌(HCC)组织中染色体8p、16q部分基因及染色体片段的遗传变异及与临床病理关系,初步筛选HCC相关的抑癌基因。方法:应用聚合酶链反应-变性聚丙烯酰胺凝胶-银染法分析45例HCC组织标本中染色体8p和16q的杂合性丢失(LOH)及微卫星不稳定性(MSI)。结果:发生LOH的总频率为68.89%(31/45),其中D16S511位点的发生LOH率最高为53.33%(24/45),其次是D8S261(39.02%,16/41)和D8S499(34.88%,15/43)。MSI出现的总频率为11.11%(5/45),出现在三个微卫星位点(D8S261、D8S499及D16S511)上。结论:染色体16q23、8p22-21.3及8p12区域的LOH发生频率高,其可能存在与HCC发生发展相关的新的抑癌基因,特定位点的遗传变异可能与HBV感染、临床病理恶性程度等预后因素相关。  相似文献   

19.
Assignment of a susceptibility locus for cutaneous malignant melanoma-dysplastic nevus (CMM/DN) to chromosome 1p remains controversial. We examined the relationship between CMM/DN and markers D1S47, PND, and D1S160 on seven new families (set B) plus updated versions of six previously reported families (set A). Three linkage analyses were performed: (1) CMM alone--all individuals without confirmed melanoma or borderline lesions were considered unaffected (model I); (2) CMM/DN with variable age at onset and sporadics (model II); and (3) CMM/DN using the model of Bale et al. (model III). For CMM alone and D1S47, Zmax = 3.12 at theta = .10. For D1S160 and CMM alone, Zmax = 1.76 at theta = .10. PND showed no evidence for linkage to CMM alone. Models II and III showed strong evidence for linkage to D1S47, D1S160, and PND in the set A pedigrees but not in the set B families. We tested for homogeneity of CMM/DN (model II) by splitting families into two groups on the basis of (1) the proportion of CMM/DN cases and (2) the occurrence of immune-related tumors. In group 1 there was significant evidence of heterogeneity with both D1S47 and D1S160, and in group 2 there was significant evidence of heterogeneity with D1S160. Thus, diagnostic, clinical, and genetic heterogeneity are the likely reasons that previous studies have failed to confirm linkage of CMM/DN to chromosome 1p. The results showed significant evidence for a CMM locus linked to D1S47, as well as significant evidence for heterogeneity with only a subset of the families appearing linked to chromosome 1p.  相似文献   

20.
In addition to the clinicopathological parameters, molecular biomarkers are becoming increasingly important in the prognostic evaluation of cancer patients. This study aimed to determine the molecular alterations in the RAS association domain family protein1A gene (RASSF1A) in salivary adenoid cystic carcinoma (ACC) and to evaluate the potential of such alterations as prognostic markers. One hundred and sixty-seven ACC tumor tissues and 50 samples of matched normal salivary gland tissues from the same patients were analyzed for RASSF1A promoter methylation status by bisulfite sequencing PCR (BSP) and/or methylation-specific PCR (MSP). Fifty ACC tumor tissues and matched normal salivary gland tissues were analyzed for loss of heterozygosity (LOH) by examining two microsatellite markers (D3S1478, D3S1621) at 3p21. RASSF1A gene mutations were detected by direct sequencing of all six exons in 50 tumor and normal tissue specimens. Over-all, RASSF1A promoter hypermethylation was detected in 35.3% (59/167) of ACC tissues and was associated with histologically solid tumor pattern (P = 0.002) and advanced TNM stage (P = 0.014). RASSF1A LOH was observed in 18.0% (9/50) of cases, and no somatic mutation of RASSF1A was detected in any cases. RASSF1A promoter methylation was associated with the poor over-all survival (Log-rank test, P <0.001) and disease-free survival (Log-rank test, P <0.001) and identified as an independent predicator of over-all patient survival (P = 0.009) and disease-free survival (P <0.001). It was concluded that RASSF1A methylation is involved in the development, differentiation and progression of ACC and is a strong independent biomarker of poor survival in ACC patients in a Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号