首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and function of the transverse tubular system(TTS) in two types of crustacean muscle fibers are examined.Giant fibers from the barnacle,Balanus nubilus, which are gradedlycontracting, are compared with allor-none twitch fibers fromthe crab, Carcinus maenas. Both fiber types were found to havedeep sarcolemmal invaginations which serve both to increasethe fiber surface area and to kfeep the length of the tubulesshort enough for electrotonic propagation.The ultrastructureof the tubular system in both types of fiber is compared.Thesystem is better developed in Carcinus than in Balanus, butthe slow Balanus fibers do have a relatively well developedTTS and sarcoplasmic reticulum in contrast to slow vertebratefibers. The apparent high, membrane-capacitance values of crustaceanfibers are the result of investigators not taking into considerationthe large increase in surface area due to the sarcolemmal infoldings.Thetubular membranes in Carcinus fibers were found to be permselectiveto chloride ions, and could be made to swell (as confirmed byelectron microscopy) by establishing an outward gradient forchloride across them. The capacitance of the tubular membranerelative to the plasma membrane was found to increase when thetubuleswere swollen. The implication of a fiber having two spatiallyseparated, differentially permeable membranes on excitation-contractioncoupling is discussed.  相似文献   

2.
Tsekos  I.; Reiss  H. D. 《Annals of botany》1993,72(3):213-222
The supramolecular organization of the vacuole membrane (orof the membranes of mucilage sacs) in 27 species of red algaeis studied in replicas of rapidly frozen and fractured cells.Intramembranous particle complexes composed of four particles('tetrads' with average diameters between 8·5 and 14·5have been observed in the protoplasmic fracture (PF) face butmost clearly and more frequently in the exoplasmic fracture(EF) face of the vacuole membrane of all red algae investigated.The tetrads lie individually within the vacuole membrane orform clusters in several species and are randomly distributed.In the species Ceramium diaphanum var. strictum and Laurenciaobtusa the intramembranous particle complexes ('tetrads') havebeen observed both in the EF and PF faces of the vacuole membrane;the 'membrane tetrads' at least as regards these two speciesseem to span both the outer and inner leaflets of the vacuolemembrane ('transmembrane particles'). The occurrence of particletetrads in the plasma membrane is probably due to exocytosiseither of the Golgi vesicles or of the mucilage sacs. Tetradfrequency in the EF face of the vacuole membranes of the investigatedred algae varies between 2 and 87 µm-2, while that ofsingle particles varies between 102 and 695 µm-2. ThePF face of the vacuole membrane is characterized by a higherparticle density than the EF face. The particle densities ofthe PF and EF faces of the plasma membrane for a given speciesare higher than those of the corresponding fracture faces ofthe vacuole membrane. Some members of Bangiophycidae bear smallerprotein particles (diameter between 8·5 and 10·5nm) in comparison with those of Florideophycidae (diameter between10·5 and 14·5 nm). It is suggested, based uponthe particle tetrads lying in depressions of the vacuole membraneand the origin of vacuoles (mucilage sacs) from ER, that theparticle tetrads originate from the ER or the Golgi complex.Since vacuoles (mucilage sacs) in red algae, along with theGolgi complex, are involved in the synthesis and export of cellsurface polysaccharides, it could be assumed that the 'membrane-tetrads'within the vacuole membrane represent a membrane-bound multienzymecomplex, participating in the synthesis of amorphous extracellularmatrix polysaccharides.Copyright 1993, 1999 Academic Press Red algae, freeze-fracture, vacuole membrane, mucilage sacs, membrane tetrads, supramolecular organization  相似文献   

3.
Strip-shaped projections are present at the cytoplasmic faceof the outer membrane of the generative cell in Amaryllis belladonna.This outer membrane is actually the inner plasma membrane ofthe vegetative cell which surrounds the generative cell. Theprojections are situated in groups and arranged parallel toeach other. Their predominant orientation is perpendicular tothe long axis of the generative cell. The projections are approximately35 nm high, and on average equally spaced 40 nm apart. Theirmaximum observed length, estimated from grazing sections ofgenerative cells, is 250 nm. Generative cell, outer membrane, Amaryllis belladonna, ultrastructure  相似文献   

4.
Free fatty acids (FFA) andsn-2-monoacylglycerol (sn-2-MG), the twohydrolysis products of dietary triacylglycerol, are absorbed from thelumen into polarized enterocytes that line the small intestine.Intensive studies regarding FFA transport across the brush-bordermembrane of the enterocyte are available; however, little is knownabout sn-2-MG transport. We therefore studied the kineticsof sn-2-MG transport, compared with those of long-chain FFA(LCFA), by human intestinal Caco-2 cells. To mimic postprandial luminaland plasma environments, we examined the uptake of taurocholate-mixed lipids and albumin-bound lipids at the apical (AP) and basolateral (BL)surfaces of Caco-2 cells, respectively. The results demonstrate thatthe uptake of sn-2-monoolein at both the AP and BL membranes appears to be a saturable function of the monomer concentration ofsn-2-monoolein. Furthermore, trypsin preincubation inhibits sn-2-monoolein uptake at both AP and BL poles of cells.These results suggest that sn-2-monoolein uptake may be aprotein-mediated process. Competition studies also support aprotein-mediated mechanism and indicate that LCFA and LCMG may competethrough the same membrane protein(s) at the AP surface of Caco-2 cells.The plasma membrane fatty acid-binding protein (FABPpm) isknown to be expressed in Caco-2, and here we demonstrate that fattyacid transport protein (FATP) is also expressed. These putative plasmamembrane LCFA transporters may be involved in the uptake ofsn-2-monoolein into Caco-2 cells.

  相似文献   

5.
Cellular membrane fractions, including endoplasmic reticum (ER),Golgi-enriched membrane, plasma membrane and tonoplasts, wereisolated from Vigna radiata seedlings. Each of these membranefractions was associated with specific ATPases which were highlydependent on Mg2+. ATPases of ER, Golgi-enriched membrane andplasma membrane were sensitive to vanadate but the tonoplastATPase was not. ATPases were mostly dependent on Cl1, but aslight stimulation by K+ was observed in the case of ATPasesof Golgi-enriched membrane and plasma membrane. KNO3 inhibitedtonoplast ATPase but stimulated the other ATPases. ER ATPasecan be distinguished from other ATPases by the following characteristics:specific inhibition by KNO2 and Triton X-100, stimulation bylow concentrations of diethylstilbestrol and 4,4'-diisothiocyanostilbene-2,2'-disulfonicacid, and high sensitivity to heat. The ATPases showed typicalMichaelis-Menten kinetics and had Km values of 0.5 to 0.6 ITIMMg2+-ATP for ER, Golgienriched-membrane and tonoplast ATPases,and 2.27 msi Mg2+-ATP for plasma membrane ATPase. ATPases ofGolgi-enriched membranes and plasma membranes had similar properties,but they were still distinguishable by the differences in theirKm values and their responses to Triton X-100. Based on theseresults, it is postulated that each cellular membrane is associatedwith a specific ATPase in cells of V. radiata. 1Contribution No. 3171 from the Institute of Low TemperatureScience. (Received April 22, 1988; Accepted September 28, 1988)  相似文献   

6.
The midgut of Rhynchosciara americana larvae consists of a cylindrical ventriculus from which protrudes two gastric caeca formed by polyhedral cells with microvilli covering their apical faces. The basal plasma membrane of these cells is infolded and displays associated mitochondria which are, nevertheless, more conspicuous in the apical cytoplasm. The anterior ventricular cells possess elaborate mitochondria-associated basal plasma membrane infoldings extending almost to the tips of the cells, and small microvilli disposed in the cell apexes. Distal posterior ventricular cells with long apical microvilli are grouped into major epithelial foldings forming multicellular crypts. In these cells the majority of the mitochondria are dispersed in the apical cytoplasm, minor amounts being associated with moderately-developed basal plasma membrane infoldings. The proximal posterior ventriculus represents a transition region between the anterior ventriculus and the distal posterior ventriculus. The resemblance between the gastric caeca and distal posterior ventricular cells is stressed by the finding that their microvilli preparations display similar alkaline phosphatase-specific activities. The results lend support to the proposal, based mainly on previous data on enzyme excretion rates, that the endo-ectoperitrophic circulation of digestive enzymes is a consequence of fluid fluxes caused by the transport of water into the first two thirds of midgut lumen, and its transference back to the haemolymph in the gastric caeca and in the distal posterior ventriculus.  相似文献   

7.
Mislocalization of endothelial nitric oxide (NO) synthase (eNOS) in response to oxidized low-density lipoprotein, cholesterol depletion, elevated blood pressure, and bound eNOS interacting protein/NOS traffic inducer is associated with reduced NO release via unknown mechanisms. The proper targeting of eNOS to the plasma membrane or intracellular organelles is an important regulatory step controlling enzyme activity. Previous studies have shown that plasma membrane eNOS is constitutively phosphorylated on serine 1179 and highly active. In contrast, the activity of eNOS targeted to intracellular organelles is more complex. The cis-Golgi eNOS is fully activated by Akt-dependent phosphorylation. However, eNOS targeted to the trans-Golgi is decidedly less active in response to all modes of activation, including mutation to the phosphomimetic aspartic acid. In this study, we establish that when expressed within other intracellular organelles, such as the mitochondria and nucleus, the activity of eNOS is also greatly reduced. To address the mechanisms underlying the impaired catalytic activity of eNOS within these locations, we generated subcellular-targeted constructs that express a calcium-independent NOS isoform, iNOS. With the use of organelle specific (plasma membrane, cis- vs. trans-Golgi, plasma membrane, and Golgi, nucleus, and mitochondria) targeting motifs fused to the wild-type iNOS, we measured NO release from intact cells. With the exception of the Golgi lumen, our results showed no impairment in the ability of targeted iNOS to synthesize NO. Confirmation of correct targeting was obtained through confocal microscopy using identical constructs fused to the green fluorescent protein. We conclude that the reduced activation of eNOS within discrete cytoplasmic regions of the Golgi, the mitochondria and the nucleus is primarily due to insufficient access to calcium-calmodulin. nitric oxide; Akt; Golgi  相似文献   

8.
The midgut structure of 4-7 day old fourth instar Chironomus thummi larvae was investigated with the light arid electron microscopes. Four regions are present which may be identified by the following major features: (1) Anterior I: this is the region under the esophageal invagination. (2) Anterior II: short microviili characterize these cells. Long narrow, basal plasma membrane infoldings associated with mitochondria are conspicuous. This region is hypothesized to be important in ion and fluid transport. (3) Anterior III: numerous crystals are seen in these cells. Storage is proposed to be a major function of this region. (4) Posterior: these cells have long microviili, extensive RER, many Golgi, and short basal plasma membrane infoldings. Posterior cells probably function in secretion of digestive enzymes and absorption of nutrients. Cadmium is sequestered by the midgut, almost exclusively in the posterior cells. This phenomenon is discussed.  相似文献   

9.
Fluorescence spectra of the pigment system at –196°Cin membrane fragments of Anabaena variabilis and A. cylindricawere investigated. The fluorescence spectra of membrane fragments having four emissionbands at 645–655, 685, 695 and 725 nm were basically similarto those reported for intact cells of blue-green algae, thoughthe emission from phycocyanin (645–655 nm) was far strongerwith membrane fragments than with intact algal cells. Incubation of membrane fragments of A. variabilis in a dilutebuffer (10–2M, pH 7.5) caused an increase in the 645 nmfluorescence and slight decreases in the 685 and 695 nm fluorescences,but had no influence on the 725 nm fluorescence. The decreasein the 685 and 695 nm fluorescences of A. cylindrica was moremarked and had the same kinetics as the inactivation of photosystemII reaction measured by DPIP-photoreduction. When membrane fragments of A. cylindrica were incubated in thebuffer solution at room temperature or in the presence of MgCl2(10–3M) at 0°C; phycobilin aggregates, which emittedthe 655 and 685 nm fluorescence, were solubilized. This solubilizationwas not observed with membrane fragments of A. variabilis. (Received August 31, 1972; )  相似文献   

10.
The Permeability of the Guard Cell Plasma Membrane and Tonoplast   总被引:4,自引:0,他引:4  
Uptake experiments and efflux compartmental analysis of planthormones, osmotica and toxins using ‘isolated’ guardcells of Valerianella locusta and guard cell protoplasts (GCP)of Vicia faba were performed in order to study the permeabilityproperties of guard cell plasma membrane and tonoplast. Theplasma membrane of guard cells exhibits a higher permeabilitythan plasma membranes of mesophyll cells for most solutes investigated.The permeability coefficients (Ps calculated for the guard cellplasma membranes are also significantly higher than the Ps valuesfor the guard cell tonoplast. This applies also for protonatedABA. We suppose that the high permeability for ABAH could bepart of the target cell properties. A Collander analysis demonstratesa linear correlation between Ps, values and the ratio Kr/Mr1,5for both plasma membrane (r = 0.87) and for the tonoplast (r=0.93). Because of deviations from the observed correlations,the permeation of some solutes (ABA, GA, IAA through the tonoplast;methylamine through the plasma membrane) seems to be facilitatedby an additional transport mechanism. The Collander analysisof the plasma membrane of GCP shows very similar results tothe analysis of the plasma membrane of ‘isolated’guard cells, indicating that isolation of protoplasts does notalter the permeability of the guard cell plasma membrane. Key words: Permeability coefficient, guard cells, plasma membrane, tonoplast  相似文献   

11.
The renal UT-A urea transporters UT-A1, UT-A2, and UT-A3 are known to play an important role in the urinary concentrating mechanism. The control of the cellular localization of UT-A transporters is therefore vital to overall renal function. In the present study, we have investigated the effect of ubiquitination on UT-A plasma membrane expression in Madin-Darby canine kidney (MDCK) cell lines expressing each of the three renal UT-A transporters. Inhibition of the ubiquitin-proteasome pathway caused an increase in basal transepithelial urea flux across MDCK-rat (r)UT-A1 and MDCK-mouse (m)UT-A2 monolayers (P < 0.01, n = 3, ANOVA) and also increased dimethyl urea-sensitive, arginine vasopressin-stimulated urea flux (P < 0.05, n = 3, ANOVA). Inhibition of the ubiquitin-proteasome pathway also increased basolateral urea flux in MDCK-mUT-A3 monolayers (P < 0.01, n = 4, ANOVA) in a concentration-dependent manner. These increases in urea flux corresponded to a significant increase in UT-A transporter expression in the plasma membrane (P < 0.05, n = 3, ANOVA). Further analysis of the MDCK-mUT-A3 cell line confirmed that vasopressin specifically increased UT-A3 expression in the plasma membrane (P < 0.05, n = 3, ANOVA). However, preliminary data suggested that vasopressin produces this effect through an alternative route to that of the ubiquitin-proteasome pathway. In conclusion, our study suggests that ubiquitination regulates the plasma membrane expression of all three major UT-A urea transporters, but that this is not the mechanism primarily used by vasopressin to produce its physiological effects. ubiquitin-proteasome pathway; urea transport; membrane localization  相似文献   

12.
The intracellular distribution of NADPH- and NADH-dependentduroquinone reductase (NAD (P)H-DQR) from etiolated zucchinihypocotyls (Cucurbita pepo L.) was investigated. About 80% ofthis enzyme is in the supernatant fraction and is probably cytosolic.Particulate NAD (P)H-DQR was largely (42%) found in associationwith the plasma membrane and was strongly stimulated by TX100.Another 33% of NAD (P)H-DQR was associated with mitochondria,and minor fractions with the endoplasmic reticulum (8%) andother particles. All these fractions were little or not stimulatedby TX100. The distribution of detergent-activated NAD (P)H-DQRis thus distinct from microsomal NADH- and NADPH-CCR. The plasma membrane was purified from microsomal fractions bymetrizamide plus sucrose density gradient centrifugation orby PEG/dextran phase partitioning. Both types of particle preparationspeaked at a density (d) of 1.165 g cm–3 in sucrose gradientsand contained substantial TX100-sensitive NADH-DQR, TX100-stimulatedNAD (P)H-DQR, together with traces of NADH-CCR and trapped ‘soluble’enzyme (MDH, NADP-malic enzyme) activities. In isopycnic gradientsof unfractionated microsomes, however, trapped enzymes peakedat d 1.155 whereas NAD (P)H-DQR peaked at d 1.165 and GSII atd 1.170, probably revealing plasma membrane heterogeneity. Furtherevidence of heterogeneity was provided by fractionation of plasmamembrane vesicles on dextran step-gradients. Most of the trapped MDH was released to the supernatant by sonicationor treatment with 0.0125% TX100. Under these conditions mostof the NAD (P)H-DQR sedimented with the membranes. It is concludedthat NAD (P)H-DQR is bound to the inside of plasma membranevesicles, but a fraction (7 to 31%) may be ‘soluble’and sequestered within the vesicle lumen. Part of the detergent-sensitiveNADH-DQR may be externally bound and accessible to non-permeatingsubstrates. Key words: Cucurbita, NAD (P)H-quinone reductase, plasma membrane  相似文献   

13.
Polypeptide compositions, ATPase characteristics, and the N-1-naphthylphthalamicacid binding capacity of plasma membranes prepared from winterrye (Secale cereale L. cv. Puma) shoots and roots were examinedand compared. Some unique polypeptides were revealed in each plasma membraneby one- and two-dimensional slab gel electrophoresis. A differencewas also detected in glycopeptide compositions. The plasma membranesfrom both organs contained Mg2+-stimulated ATPase exhibitingslightly different properties in the divalent cation specificityand the kinetic constants. The ATPase activities from both organsshowed a similar optimum pH around 6.5, simple Michaelis-Mentensaturation with increasing ATP-Mg concentrations, and littleK+-stimulation at the optimum pH. Both ATPases were inhibitedby orthovanadate, however, the degree of inhibition was a littledifferent in each membrane sample. The specific N-1-naphthylphthalamicacid binding capacity in the shoot plasma membrane was 2.6-foldhigher than that in the root plasma membrane. These results suggest that polypeptide compositions of plasmamembranes vary corresponding with a difference in the physiologicalfunctions of plasma membranes between shoots and roots of winterrye. 1 Contribution No. 2670 from the Institute of Low TemperatureScience. (Received May 17, 1984; Accepted October 9, 1984)  相似文献   

14.
Light-induced absorbance changes at 560 nm, and electrochromicshifts in absorption of carotenoids responding to membrane potentialacross the thylakoid membrane, were studied, comparing themwith the kinetics of cytochrome f photooxidation, in the dark-adaptedintact chloroplasts of the green alga Bryopis maxima. The 560nm changes showed transient variations, characterized by a sharpinitial peak followed by a second, lower peak, within a fewseconds of illumination. The time course of the 560 nm changesis parallel to that of light-induced transient changes of cytochromef. Inhibitors and redox substances which selectively influenceddifferent transient phases of the cytochrome f induction alsospecifically affected corresponding transient phases of the560 nm changes. These results indicate that the two inductionphenomena are closely related to each other and that the inductionof the 560 nm change is due to light-dependent changes in electrontransfer on the reducing side of photosystem I. A possible mechanismfor the electric field formation by electron transfer associatedwith photosystem I will be discussed. (Received May 9, 1977; )  相似文献   

15.
The plasma membrane fraction from leaves of tobacco containsa 54-kDa protein with autophosphorylation activity, and thelevel of this protein increases after feeding of leaves withsucrose [Ohto and Nakamura (1995) Plant Physiol. 109: 973].The 54-kDa autophosphorylation protein could not be releasedfrom the plasma membrane by treatment with salt or alkali butcould be efficiently solubi-lized by 1% sodium deoxycholate(NaDOC). Ion-exchange chromatography of the NaDOC-solubilizedproteins in the presence of octylglucoside separated the 54-kDaautophosphorylation protein into three peaks. The autophosphorylationactivity of the 54-kDa protein in peaks I and II increased afterfeeding of leaves with sucrose. The 54-kDa protein in the peakII fraction was enriched about 125-fold starting from the microsomalmembrane fraction. The 54-kDa protein in this fraction phosphorylatedhistone HIS in a calcium-dependent manner and cross-reactedwith an antibody against a calcium-dependent protein kinase(CDPK) of Arabidopsis thaliana. These results suggest that the54-kDa protein in the peak II fraction is a novel isoform ofCDPK which is associated with the plasma membrane and is inducibleby sucrose. (Received September 29, 1997; Accepted September 1, 1998)  相似文献   

16.
No correlations were recognized between Al tolerance among fourplant species, rice (Oryza sativa L.), maize (Zea mays L.),pea (Pisum sativum L.), and barley (Hordeum vulgare L.), inrank order of Al tolerance, and cation exchange capacities ofroot-tip (0-1 cm) cells or of their cell walls. The plasma membraneof root-tip of Al sensitive plant species (pea and barley) wasconsiderably permeabilized with elongation of root in Al-freesolution following 0.5 h pretreatment with Al. K+ release fromand Al permeation into the protoplasts isolated from the root-tipof Al-sensitive plant species were more significant than thosefor Al-tolerant plant species (rice and maize) on 10 or 30 mintreatment with Al. The permeability of the plasma membrane forprotoplasts isolated from Al sensitive plant species was considerablyincreased by treatment with hy-potonic Al-free control solutionfollowing 10 min pretreatment with Al. To our knowlege, theseare the most rapid responses to Al ions reported to date, i.e.,within 0.5 h in whole plant and within 10 min in protoplast.These results suggest that a temporary contact with Al ionsirreversibly alters the plasma membrane of root-tip cells ofAl-sensitive plant species: the cells become more leaky andrigid due to binding of Al ions to the plasma membrane. (Received January 5, 1998; Accepted February 26, 1998)  相似文献   

17.
Freeze-fracture electron microscopy of propane-jet-frozen samples has been employed to investigate vesicle-mediated secretion and membrane recycling events in carrot (Daucus carota L.) and sycamore maple (Acer pseudoplatanus L.) suspension-culture cells. Stabilization of the cells by means of ultrarapid freezing has enabled us to preserve the cells in a turgid state and to visualize new intermediate membrane configurations related to these events. Indeed, many of the observed membrane configurations, such as flattened membrane vesicles with slit-shaped membrane fusion sites and horseshoe-shaped membrane infoldings, appear to result from the action of turgor forces on the plasma membrane. Individual cells exhibited great variations in numbers and types of membrane configurations postulated to be related to secretion and membrane-recycling events. In the majority of cells, the different membrane profiles displayed a patchy distribution, and within each patch the membrane configurations tended to be of the same stage. This result indicates that secretory events are triggered in domains measuring from 0.1 to about 10 μm in diameter. Based on an extensive analysis of the different membrane configurations seen in our samples, we have formulated the following model of vesicle-mediated secretion in plant cells: Fusion of a secretory vesicle with the plasma membrane leads to the formation of a single, narrow-necked pore that increases in diameter up to about 60 nm. During discharge, the vesicle is flattened, forming a disc-shaped structure perpendicular to the plane of the plasma membrane. As the vesicle is flattened, the pore is converted to a slit, the maximum length of which coincides with the diameter of the flattened vesicle. The flattened vesicle then tips over and concomitantly the plasma-membrane slit becomes curved into a horseshoe-shaped configuration as it extends along the outer margins of the tipped-over vesicle. Some coated pits are present interspersed between the above-mentioned structures, but their numbers appear insufficient to account for an exclusively endocytotic mechanism of membrane recycling. Instead, our micrographs are more consistent with a mixed mode of recycling of membrane components to the cortical endoplamic reticulum and to Golgi cisternae that involves both internalization of membrane by endocytosis and of individual lippid molecules by unknown mechanisms (lipid exchange proteins?). To this end, overall flattening out of the horseshoe-shaped membrane infoldings is accompanied by a retraction and reduction in size of their central, tongue-like structure.  相似文献   

18.
The permeability (P) of a lipophilic cation, triphenylmethylphosphonium(TPMP+) which is frequently used as a membrane potential probe,has been measured in Chara australis (Charophyceae). PTPMP+across biological membranes is usually thought to be very highbut this is not the case across the plasmalemma of Chara. Thepermeability of TPMP+ across the plasmalemma was found to betypical of inorganic cations, about 1.0 nm s–1. Estimateswere made of the permeability of lipophilic cations across someother cell membranes, based on previously published work. Thepermeability of TPMP+ across the plasma membranes of the redalga, Griffithsia monilis and the blue-green alga, Anabaenavariabilis was about 2–5 nm s–1. The permeabilityof TPMP+ across the plasma membranes of eukaryotes and prokaryotesappears to be similar. The permeability of lipophilic cationsacross the cristae of isolated mitochondria are exceptionallyhigh, about 170 nm s–1. TPMP+ did not behave as a thiamineanalogue in Chara, unlike in the case of yeast. The means ofentry of TPMP+ into the Chara cell, driven by the electrochemicalgradient across the plasmalemma, has not been identified. Thepresence of a second lipophilic cation probe, DDA+ (dibenzyldimethylammonium),caused a decrease in the uptake flux of TPMP+; this suggeststhat the two lipophilic cations compete for the same site atthe surface of the plasmalemma. Key words: Chara australis, TPMP+, Permeability, Lipophilic cation  相似文献   

19.
Summary The mechanism of plasma membrane turnover was investigated using the duckling salt gland as a model system. Feeding fresh water to saltstressed ducklings results in a decrease in the Na, K-ATPase in salt gland to nonstressed levels in about 7 days, as measured by ATP hydrolysis and 3H-ouabain binding. Electron micrographs reveal that this is accompanied by a decrease in plasma membrane infoldings on the basal and lateral borders of gland secretory cells. Simultaneously there is an increase in filamentous material and a rise in acid phosphatase and peptidase activities in these cells. Cytochemistry shows that the acid phosphatase activity is mostly associated with the basal or basolateral regions of secretory cells. These observations could indicate that the removal of plasma membrane components is accomplished by internalization and digestion within the secretory cells.  相似文献   

20.
Mizuta  Shun 《Plant & cell physiology》1985,26(8):1443-1453
The assembly of cellulose synthesizing complexes (terminal complexes,TCs) on the plasma membrane of Boodlea coacta was investigatedduring the formation of both the matrix-rich layer (MRL) andfibril-rich layers (FRLs) of cell walls. The TCs appeared tobe located mostly within the outer leaflet of the plasma membrane,and were observed as elliptical protrusions consisting of manyparticles of about 9 nm in diameter. Their length varied from100 to 500 nm (average, 220 nm) during MRL formation and from100 to 860 nm (average, 360 nm) during FRL formation. A correlationwas found between the length of TCs and the microfibril widthin both MRL and FRL. On the E-face of the plasma membrane, numerous round protrusions(30–130 nm in diameter), consisting of many particles,8–10 nm in diameter, were also present. Their densitywas greater during FRL formation than during MRL formation.Some of these structures larger than 100 nm were associatedwith microfibril impressions and some appeared to be bound tothe TCs. These protrusions increased in number with Calcofluortreatment but decreased in number when the dye was removed fromthe culture medium. Thus, the TCs may be assembled from massesof particles aggregated on the outer surface of the plasma membrane,and may grow longer by incorporation of these masses. The appearanceof the longer TCs during FRL formation is probably due to thegreater density of these masses. (Received May 1, 1985; Accepted August 16, 1985)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号