首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gangliosides are implicated in neuronal development processes. The regulation of ganglioside levels is closely related to the induction of neuronal cell differentiation. In this study, the relationship between ganglioside expression and neuronal cell development was investigated using an in vitro model of neural differentiation from mouse embryonic stem (mES) cells. Daunorubicin (DNR) was applied to induce the expression of gangliosides in embryoid body (EB) (4+). We observed an increase in expression of gangliosides in all stages of EBs by treatment of DNR (2microM). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GD3, GD1a, GT1b, and GQ1b increased in DNR-treated 7-day-old EB (4+) [EB (4+):7]. DNR treatment significantly increased the expression of gangliosides, especially GT1b and GQ1b in comparison to control cells. Interestingly, GQ1b co-localized with microtubule-associated protein 2 (MAP-2) expressing cells in DNR-treated EB (4+):7. The co-localization of GQ1b and MAP-2 was found in neurite-bearing cells in DNR-treated 15-day-old EB (4+) [EB (4+):15], whereas no significant expression of GQ1b and less neurite formation were observed in untreated control. Also, the expression of synaptophysin and NF200, both neuronal markers associated with neruites, was increased by DNR treatment. These results demonstrate that DNR increases expression of gangliosides, especially GQ1b, in differentiating neuronal cells. Further, neurite-bearing neuronal cell differentiation can be facilitated by DNR, possibly through the induction of gangliosides. Thus, the present data suggest that DNR is beneficial for facilitating neuronal differentiation from ES cells and among the gangliosides analyzed in the present study, GQ1b is mainly involved in neurite formation.  相似文献   

2.
3.
To clarify the role of gangliosides in the morphological and biochemical differentiation of neuronal cell cultures, the model cell culture system represented by two neuroblastoma cell lines, GOTO and NB-1, which were established from adrenal gland and metastatic neck lymph node, respectively, was examined. We found that the total ganglioside fraction from human brain had two remarkable effects on these cell lines, which are similar to those of nerve growth factor (NGF): (a) an increase in the cell number, and (b) an increase in the neurite number and the total length of neurites. In these cases, the genuine effector in total gangliosides could not be ascribed to a possibly contaminating NGF-like protein, but rather to a particular molecular species of the gangliosides, GQ1b, which could completely replace the effector function not only qualitatively but also quantitatively. Our results provide direct evidence for the participation of gangliosides in such functions.  相似文献   

4.
Seven monoclonal antibodies (MAbs) directed to tetrasialoganglioside (GQ1b) were established, purified GQ1b being used for immunization and hybridoma screening. All of the MAbs reacted strongly with GQ1b, although they also reacted with other gangliosides, with different specificities and reactivities. Some MAbs (1H10, 2C7, and 3F4) reacted with GD3, GT1a, GQ1b, and GP1c. MAb 1H4 showed broad specificity. It reacted with GD3, GD1b, GD2, GT1a, GT1b, GO1b, GQ1c, and GP1c. MAbs 7F5, 4E7, and 4F10 recognized GT1a, GQ1b, and GP1c. MAb 4F10 was more specific for GQ1b than the other MAbs. Using MAb 4F10, we determined, by means of an immunoassay, the quantities of endogenous GQ1b in some neuronal and adrenal cell lines, GOTO (human neuroblastoma), Neuro2a (mouse neuroblastoma), and PC12 (rat pheochromocytoma). PC12 and Neuro2a cells contained at least 5.1 X 10(6) and 3.9 X 10(5) molecules/cell of GQ1b, respectively. In contrast, no GQ1b was detected in GOTO cells, which are known for their specific neuritogenic response to this particular ganglioside when exogenously added.  相似文献   

5.
The T-locus on mouse chromosome 17 contains a number of mutations that disrupt cellular differentiation and embryonic development. Because of their purported role in neuronal differentiation and brain development, gangliosides were studied in mouse embryos homozygous for two T-locus mutations: T and twl. Mice homozygous for the dominant T mutation die from failed mesodermal differentiation in the notochord, whereas mice homozygous for the recessive twl mutation die from failed neural differentiation in the ventral portion of the neural tube. No major ganglioside abnormalities were found in T/T mutant embryos at Embryonic Day 10 (E-10). In contrast, E-11 twl/twl mutants expressed a marked deficiency of the tetrasialoganglioside GQ1. Since this ganglioside migrates with GQ1b in three different thin-layer solvent systems, it may have the same structure as GQ1b. To gain insight into regional distribution, gangliosides were examined in head regions and body regions of normal (+/+) E-11 embryos. The ganglioside composition of these regions was the same as that of the whole embryo, with GM3 and GD3 comprising about 75% of the total ganglioside distribution. Moreover, N-acetylneuraminic acid was the only sialic acid species detectable in the E-10 and the E-11 embryos. These findings indicate that N-acetylneuraminic acid-containing gangliosides are synthesized actively in E-10 and E-11 mouse embryos and also suggest that the GQ1 deficiency in the twl/twl mutants is closely associated with failed neural differentiation.  相似文献   

6.
Ganglioside Composition of Normal and Mutant Mouse Embryos   总被引:2,自引:0,他引:2  
The enrichment of gangliosides in neuronal membranes suggests that they play an important role in CNS development. We recently found a marked tetrasialoganglioside deficiency in twl/twl mutant mouse embryos at embryonic day (E)-11. The recessive twl/twl mutants die at embryonic ages E-9 to E-18 from failed neural differentiation in the ventral portion of the neural tube. In the present study, we examined the composition and distribution of gangliosides in twl/twl mutant mouse embryos at E-12. The total ganglioside sialic acid concentration was significantly lower in the mutants than in normal (+/-) embryos. The mutants also expressed significant deficiencies of gangliosides in the "b" metabolic pathway (GD3, GD1b, GT1b, and GQ1b) and elevations in levels of gangliosides in the "a" metabolic pathway (GM3, GM2, GM1, and GD1a). These findings suggest that the mutants have a partial deficiency in the activity of a specific sialyltransferase in the b pathway. Regional ganglioside distribution was also studied in E-12 normal mouse embryos. The ganglioside composition in heads and bodies was similar to each other and to whole embryos. Total ganglioside concentration and the distribution of b pathway gangliosides were significantly higher in neural tube regions than in nonneural tube regions. These findings suggest that b pathway gangliosides accumulate in differentiating neural cells and that the deficiency of these gangliosides in the twl/twl mutants is closely associated with failed neural differentiation.  相似文献   

7.
A ganglioside-stimulated ecto-type protein phosphorylation system (ecto-Gg-kinase) was detected on the cell surface of a human neuroblastoma cell line (GOTO). When intact cells were incubated with [gamma-32P]ATP, at least 28 cell surface proteins were phosphorylated, as evident on SDS-PAGE (4-20%) analysis. Exogenously added gangliosides specifically stimulated the phosphorylation of at least three cell surface associated proteins of Mr = 64,000, 60,000, and 54,000. Phosphorylation was directed toward Thr and Ser residues, respectively, as revealed on acid hydrolysis followed by electrophoresis. GQ1b, at 5 nM, was the most potent among the several gangliosides tested and was more effective when added to cells before [gamma-32P]ATP administration. The simultaneous addition of an excess amount of the saccharide portion of GQ1b (oligo-GQ1b) inhibited the GQ1b-stimulated phosphorylation, indicating the necessity of the sialosaccharide moiety. These results strongly suggest that phosphorylation of the three proteins may be closely associated with the highly specific neuritogenic effect of GQ1b previously reported.  相似文献   

8.
A ganglioside-stimulated protein phosphorylation system was discovered in plasma membrane fractions of human neuroblastoma cells (GOTO). Gangliosides (GQ1b, GT1a, GT1b, GD1a, GD1b, GD3, and GM1) could stimulate this system. GQ1b showed the most effective stimulation among these gangliosides. The substrate specificity was rather broad. Not only some (de novo) proteins of the membranes but also purified histones and tubulin were phosphate-acceptable. This protein phosphorylation system specifically depended upon Ca2+ (optimum concentration: 50-100 microM). The optimum pH was 7.0-7.5. GQ1b/Ca2+ could not directly activate well known protein kinases (Ca2+/phospholipid-activated protein kinase, Ca2+/calmodulin-activated protein kinase, and cyclic nucleotide-dependent protein kinases). Furthermore, GQ1b could replace neither phospholipids nor calmodulin. Thus, an unknown, new type of protein kinase(s) may be involved in this system. Alternatively, GQ1b may activate some known protein kinase(s) in cooperation with another unknown factor which may be removed during the preparation of the partially purified known protein kinase used in this experiment.  相似文献   

9.
Identity of GD1C, GT1a and GQ1b synthase in Golgi vesicles from rat liver   总被引:1,自引:0,他引:1  
H Iber  K Sandhoff 《FEBS letters》1989,254(1-2):124-128
Competition experiments using GM1b, GD1a and GT1b as substrates, and as mutual inhibitors for ganglioside sialyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that sialyl transfer to these three respective compounds, leading to gangliosides GD1C, GT1a and GQ1b, respectively, is catalyzed by one enzyme. These results are incorporated into a model for ganglioside biosynthesis and its regulation.  相似文献   

10.
Glycosphingolipids (GSLs) and their sialic acid-containing derivatives, gangliosides, are important cellular components and are abundant in the nervous system. They are known to undergo dramatic changes during brain development. However, knowledge on the mechanisms underlying their qualitative and qualitative changes is still fragmentary. In this investigation, we have provided a detailed study on the developmental changes of the expression patterns of GSLs, GM3, GM1, GD3, GD1a, GD2, GD1b, GT1b, GQ1b, A2B5 antigens (c-series gangliosides such as GT3 and GQ1c), Chol-1alpha (GT1aalpha and GQ1balpha), glucosylceramide, galactosylceramide (O1 antigen), sulfatide (O4 antigen), stage-specific embryonic antigen-1 (Lewis x) glycolipids, and human natural killer-1 glycolipid (sulfoglucuronosyl paragloboside) in developing mouse brains [embryonic day 12 (E12) to adult]. In E12-E14 brains, GD3 was a predominant ganglioside. After E16, the concentrations of GD3 and GM3 markedly decreased, and the concentrations of a-series gangliosides, such as GD1a, increased. GT3, glucosylceramide, and stage-specific embryonic antigen-1 were expressed in embryonic brains. Human natural killer-1 glycolipid was expressed transiently in embryonic brains. On the other hand, Chol-1alpha, galactosylceramide, and sulfatide were exclusively found after birth. To provide a better understanding of the metabolic basis for these changes, we analyzed glycogene expression patterns in the developing brains and found that GSL expression is regulated primarily by glycosyltransferases, and not by glycosidases. In parallel studies using primary neural precursor cells in culture as a tool for studying developmental events, dramatic changes in ganglioside and glycosyltransferase gene expression were also detected in neurons induced to differentiate from neural precursor cells, including the expression of GD3, followed by up-regulation of complex a- and b-series gangliosides. These changes in cell culture systems resemble that occurring in brain. We conclude that the dramatic changes in GSL pattern and content can serve as useful markers in neural development and that these changes are regulated primarily at the level of glycosyltransferase gene expression.  相似文献   

11.
We established six murine monoclonal antibodies (MAbs) specific for b-pathway ganglio-series gangliosides by immunizing C3H/HeN mice with these purified gangliosides adsorbed to Salmonella minnesota mutant R595. The binding specificities of these MAbs were determined by an enzyme-linked immunosorbent assay and immunostaining on thin-layer chromatogram. These six MAbs, designated GGB19, GMR2, GMR7, GGR12, GMR5, and GGR13 reacted strongly with the gangliosides GD3, O-Ac-GD3, GD2, GD1b, GT1b, and GQ1b, respectively, that were used as immunogens. All these MAbs except GGB19 showed highly restricted binding specificities, reacting only with the immunizing ganglioside. None of other various authentic gangliosides or neutral glycolipids were recognized. On the other hand, MAb GGB19 exhibited a broader specificity, cross-reacting weakly with O-Ac-GD3, GQ1b, and GT1a, but not with other gangliosides or neutral glycolipids. Using these MAbs, we determined the expression of these gangliosides, especially GD1b, GT1b, and GQ1b on mouse, rat, and human leukemia cells. GD1b was expressed on rat leukemia cells, but not on mouse and human leukemia cells tested. Neither GT1b nor GQ1b was detected in these cell lines.  相似文献   

12.
Kwak DH  Jin JW  Ryu JS  Ko K  Lee SD  Lee JW  Kim JS  Jung KY  Ko K  Ma JY  Hwang KA  Chang KT  Choo YK 《BMB reports》2011,44(12):799-804
Gangliosides play an important role in neuronal differentiation processes. The regulation of ganglioside levels is related to the induction of neuronal cell differentiation. In this study, the ST8Sia5 gene was transfected into mESCs and then differentiated into neuronal cells. Interestingly, ST8Sia5 gene transfected mESCs expressed GQ1b by HPTLC and immunofluorescence analysis. To investigate the effects of GQ1b over-expression in neurogenesis, neuronal cells were differentiated from GQ1b expressing mESCs in the presence of retinoic acid. In GQ1b expressing mESCs, increased EBs formation was observed. After 4 days, EBs were co-localized with GQ1b and nestin, and GFAP. Moreover, GQ1b co-localized with MAP-2 expressing cells in GQ1b expressing mESCs in 7-day-old EBs. Furthermore, GQ1b expressing mESCs increased the ERK1/2 MAP kinase pathway. These results suggest that the ST8Sia5 gene increases ganglioside GQ1b and improves neuronal differentiation via the ERK1/2 MAP kinase pathway.  相似文献   

13.
Specific gangliosides GD1a, GT1b and GQ1b isolated from brain have been shown to function as receptors for Sendai virus by conferring susceptibility to infection when they are incorporated into receptor-deficient cells (Markwell, M.A.K., Svennerholm, L. and Paulson, J.C. (1981) Proc. Natl. Acad. Sci. USA 78, 5406-5410). The endogenous gangliosides of three commonly used hosts for Sendai virus: MDBK, HeLa, and MDCK cells were analyzed to determine the amount and type of receptor gangliosides present. In all three cell lines, GM3 was the major ganglioside component. The presence of GM1, GD1a and the more complex homologs of the gangliotetraose series was also established. In cell lines derived from normal tissue, MDBK and MDCK cells, gangliosides contributed 47-65% of the total sialic acid. In HeLa cells, gangliosides contributed substantially less (17% of the total sialic acid). The ganglioside content of each cell line was shown not to be immutable but instead to depend on the state of differentiation, passage number, and surface the cells were grown on. Thus, the ganglioside concentration of undifferentiated MDCK cells was found to be substantially greater than that of MDBK or HeLa cells, but decreased as the MDCK cells underwent differentiation. Changes in culture conditions that were shown to decrease the receptor ganglioside content of the cells resulted in a corresponding decrease in susceptibility to infection. The endogenous oligosialogangliosides present in susceptible host cells were shown to function as receptors for Sendai virus.  相似文献   

14.
Guillain–Barré syndrome (GBS) is an acute autoimmune neuropathy, often preceded by an infection. Serum anti-ganglioside antibodies are frequently elevated in titer. Those antibodies are useful for diagnosis. Some of them also may be directly involved in the pathogenetic mechanisms by binding to the regions where the respective target ganglioside is specifically localized. We have recently found the presence of the antibody that specifically recognizes a new conformational epitope formed by two gangliosides (ganglioside complex) in the acute-phase sera of some GBS patients. In particular, the antibodies against GD1a/GD1b and/or GD1b/GT1b complexes are associated with severe GBS requiring artificial ventilation. Some patients with Miller Fisher syndrome also have antibodies against ganglioside complexes including GQ1b; such as GQ1b/GM1 and GQ1b/GD1a. Gangliosides along with other components as cholesterol are known to form lipid rafts, in which the carbohydrate portions of two different gangliosides may form a new conformational epitope. Within the rafts, gangliosides are considered to interact with important receptors or signal transducers. The antibodies against ganglioside complexes may therefore directly cause nerve conduction failure and severe disability in GBS. More study is needed to elucidate the roles of the antibodies against ganglioside complexes.  相似文献   

15.
We investigated the localization of major gangliosides in adultrat brain by an immunofluorescence technique with mouse monoclonalantibodies (MAbs). Five MAbs (GMB16, GMR17, GGR12, GMR5 andGMR13) that specifically recognize gangliosides GM1, GD1a, GD1b,GT1b and GQ1b, respectively, were used. We have found that thereis a cell type-specific expression of the ganglioside in therat central nervous system. In cerebellar cortex, GM1 was expressedin myelin and some glial cells. GD1a was detected exclusivelyin the molecular layer. GD1b and GQ1b were present restrictedlyon the granular layer; GD1b was detected on the surface of thegranular cell bodies, whereas GQ1b was present in the cerebellarglomerulus. GT1b was distributed intensely in both the molecularlayer and the granular layer. In cerebral cortex, GM1 was detectedin some glial cells. Dense staining was limited to the whitematter. GD1a was distributed in layers I, II/III and Va, andthe upper part of layer VI, whereas GQ1b was localized in layersIV and Vb, and the lower part of layer VI. GD1b was detectedbeneath layer III. GT1b appeared to be distributed throughoutall layers. In other regions, such as hippocampal formationand spinal cord, the expression of the ganglioside was alsohighly localized to a specific cell type and layer. ganglioside monoclonal antibody rat brain  相似文献   

16.
Guillain-Barré syndrome (GBS) is an acute autoimmune neuropathy, often preceded by an infection. Serum anti-ganglioside antibodies are frequently elevated in titer. Those antibodies are useful for diagnosis. Some of them also may be directly involved in the pathogenetic mechanisms by binding to the regions where the respective target ganglioside is specifically localized. We have recently found the presence of the antibody that specifically recognizes a new conformational epitope formed by two gangliosides (ganglioside complex) in the acute-phase sera of some GBS patients. In particular, the antibodies against GD1a/GD1b and/or GD1b/GT1b complexes are associated with severe GBS requiring artificial ventilation. Some patients with Miller Fisher syndrome also have antibodies against ganglioside complexes including GQ1b; such as GQ1b/GM1 and GQ1b/GD1a. Gangliosides along with other components as cholesterol are known to form lipid rafts, in which the carbohydrate portions of two different gangliosides may form a new conformational epitope. Within the rafts, gangliosides are considered to interact with important receptors or signal transducers. The antibodies against ganglioside complexes may therefore directly cause nerve conduction failure and severe disability in GBS. More study is needed to elucidate the roles of the antibodies against ganglioside complexes.  相似文献   

17.
Human dental pulp-derived stem cells (hDPSCs) have been considered alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. This study investigated the possible role of gangliosides in the neural differentiation of hDPSCs. When hDPSCs were cultured under neural differentiation conditions, expression of neural cell marker genes such as Nestin, MAP-2, and NeuN was detected. Immunostaining and high-performance thin-layer chromatography analysis showed that an increase in ganglioside biosynthesis was associated with neural differentiation of hDPSCs. Specifically, a significant increase in GD3 and GD1a expression was observed during neural differentiation. To confirm the role of gangliosides in neural differentiation, ganglioside biosynthesis was inhibited in hDPSCs by knockdown of UDP-glucose ceramide glucosyltransferase (Ugcg), which prevented differentiation into neural cells. These results suggest that gangliosides may play a role in the neural differentiation process of hDPSCs.  相似文献   

18.
In this study, brain gangliosides in prenatal and postnatal human life and Alzheimer's disease were analyzed. Immunohistochemically, the presence of the "c"-series of gangliosides (GQ1c) was only registered in the embryonic brain at 5 weeks of gestation. Biochemical results indicated a two-fold increase in ganglioside concentration in the human cortex between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except in the cerebellar cortex, which was characterized by increasing GT1b. During prenatal human development, regional differences in ganglioside composition could only be detected between the cerebrum ("a"-pathway) and the cerebellum ("b"-pathway). Between birth and 20-30 years of age, a cerebral neocortical difference of ganglioside composition occurred, characterized by the lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In the frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in the occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In the cerebellar cortex, GD1b and GT1b fractions decreased with aging. In Alzheimer's disease, we found all ganglio-series gangliosides (GM1, GD1a, GD1b, GT1b) to be decreased in regions (temporal and frontal cortex and nucleus basalis of Meynert) involved in pathogenesis of disease. In addition, in Alzheimer's disease we found simple gangliosides (GN2, GM3) to be elevated in the frontal and parietal cortex, which might correlate accelerated lysosomal degradation of gangliosides and/or astrogliosis occurring during neuronal death.  相似文献   

19.
Saito M  Sugiyama K 《Life sciences》2000,67(15):1891-1899
Gangliosides of eye lenses from normal and experimentally induced diabetic rats were investigated by methods including glycolipid-overlay techniques. Adult rat eye lens showed a complex ganglioside pattern that consisted of six major ganglioside components. These gangliosides were identified as GM3, GD3, GD1a, GD1b, GT1b, and GQ1b based upon their reactivity to anti-GM1 antibody after in situ sialidase treatment and mobility on thin-layer chromatography (TLC). Gangliosides in eye lens were further characterized by TLC-immunostaining with A2B5, a specific monoclonal antibody directed toward c-series gangliosides. Eye lens contained GT3 as the main c-series ganglioside component. Unexpectedly, the relative concentration of GT3 in total gangliosides of eye lens was highest among neural and extra-neural tissues examined. Administration of streptozotocin to rats caused a severe reduction in the GT3 content in eye lenses as early as day 3 without apparent changes in the composition of major gangliosides. Alloxan failed to produce such an effect despite producing similar hyperglycemic conditions. These results suggest that rat eye lens probably contains a streptozotocin-susceptible cell type(s), which is highly enriched with c-series gangliosides.  相似文献   

20.
Neuronal and glial cells organizing the central nervous system (CNS) are generated from common neural precursor cells (NPCs) during neural development. However, the expression of cell-surface glycoconjugates that are crucial for determining the properties and biological function of these cells at different stages of development has not been clearly defined. In this study, we investigated the expression of several stage-specific glycoconjugate antigens, including several b-series gangliosides GD3, 9-O-acetyl GD3, GT1b and GQ1b, stage-specific embryonic antigen-1 (SSEA-1) and HNK-1, in mouse embryonic NPCs employing immunocytochemistry and flow cytometry. In addition, several of these antigens were positively identified by chemical means for the first time. We further showed that the SSEA-1 immunoreactivity was contributed by both glycoprotein and glycolipid antigens, and that of HNK-1 was contributed only by glycoproteins. Functionally, SSEA-1 may participate in migration of the cells from neurospheres in an NPC cell culture system, and the effect could be repressed by anti-SSEA-1 antibody. Based on this observation, we identified beta1 integrin as one of the SSEA-1 carrier glycoproteins. Our data thus provide insights into the functional role of certain glycoconjugate antigens in NPCs during neural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号