共查询到20条相似文献,搜索用时 0 毫秒
1.
Production and secretion of retinol-binding protein by a human hepatoma cell line, HepG2 总被引:2,自引:0,他引:2
Retinol-binding protein (RBP) that is synthesized and secreted by the human hepatoma cell HepG2 has been measured using a sensitive radioimmunoassay in which RBP in media and hepatoma cell sonicates reacts identically to human serum RBP. RBP was synthesized and secreted when cells were grown in retinol-depleted as well as retinol-containing media. However, immunoreactive transthyretin (prealbumin) could not be detected in concentrated HepG2 medium. RBP secretion and accumulation per mg of cell protein could be modulated by the concentration of fetal calf serum in the growth medium: secreted RBP equaled 782 +/- 123 ng/mg of cell protein per 8 hr after preincubation with 10% fetal calf serum versus 555 +/- 86 ng/mg per 8 hr in the absence of serum, whereas RBP in cell sonicates decreased only slightly. When HepG2 cells were cultured for two or more passages in medium containing fetal calf serum depleted of retinol by ultraviolet irradiation, the amounts of RBP in the cells and released to the medium were both significantly increased. When vitamin A (90% as retinyl esters) in the form of chylomicron remnants was presented to cells, there was a significant, dose-dependent redistribution of RBP from cells to medium, both in cells grown in normal fetal calf serum and in retinol-depleted serum. These data indicate that the secretion of RBP by HepG2 can occur constitutively in the absence of retinol, but that secretion can be enhanced and regulated by retinol delivered by the chylomicron remnant. 相似文献
2.
We investigated the growth inhibitory effect of conjugated linoleic acid (CLA) on HepG2 (human hepatoma cell line), exploring whether the inhibitory action occurs via lipid peroxidation in the cells. When the cells were incubated up to 72 h with 5-40 microM of CLA (a mixture of 9c,11t-18:2 and 10t,12c-18:2), cell proliferation was clearly inhibited in a dose and time dependent manner but such an inhibition was not confirmed with linoleic acid (LA). In order to evaluate the possible contribution of lipid peroxidation exerted by CLA to cell growth inhibition, alpha-tocopherol (5-20 microM) and BHT (1-10 microM) as potent antioxidants were added to the medium with CLA (20 microM), which did not restore cell growth at all. Furthermore, after 72 h incubation, the membranous phospholipid hydroperoxide formation in the CLA-supplemented cells was suppressed respectively to 25% and 50% of that in LA-supplemented cells and control cells. No difference was observed by a conventional lipid peroxide assay, the TBA test, between CLA-supplemented cells and LA-supplemented cells. Although the cellular lipid peroxidation was not stimulated, lipid contents (triacylglycerol, total cholesterol and free cholesterol) and fatty acid contents (palmitic acid, palmitoleic acid and stearic acid) markedly increased in CLA-supplemented cells compared with LA-supplemented and control cells. Moreover, supplementation with 20 microM LA and 20 microM arachidonic acid profoundly interfered with the inhibitory effect of CLA in HepG2. These results suggest that the growth inhibitory effect of CLA on HepG2 is due to changes in fatty acid metabolism but not to lipid peroxidation. 相似文献
3.
4.
N Dashti G Wolfbauer E Koren B Knowles P Alaupovic 《Biochimica et biophysica acta》1984,794(3):373-384
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism. 相似文献
5.
Binding and degradation of human high-density lipoproteins by human hepatoma cell line HepG2 总被引:1,自引:0,他引:1
The catabolism of human HDL was studied in human hepatoma cell line HepG2. The binding of 125I-labeled HDL at 4 degrees C was time-dependent and reached completion within 2 h. The observed rates of binding of 125I-labeled HDL at 4 degrees C and uptake and degradation at 37 degrees C indicated the presence of both high-affinity and low-affinity binding sites for this lipoprotein density class. The specific binding of 125I-labeled HDL accounted for 55% of the total binding capacity. The lysosomal degradation of 125I-labeled HDL was inhibited 25 and 60% by chloroquine at 50 and 100 microM, respectively. Depolymerization of microtubules by colchicine (1 microM) inhibited the degradation of 125I-labeled HDL by 36%. Incubation of cells with HDL caused no significant change in the cellular cholesterol content or in the de novo sterol synthesis and cholesterol esterification. Binding and degradation of 125I-labeled HDL was not affected by prior incubation of cells with HDL. When added at the same protein concentration, unlabeled VLDL, LDL and HDL had similar inhibitory effects on the degradation of 125I-labeled HDL, irrespective of a short or prolonged incubation time. Reductive methylation of unlabeled HDL had no significant effect on its capacity to inhibit the 125I-labeled HDL degradation. The competition study indicated no correlation between the concentrations of apolipoproteins A-I, A-II, B, C-II, C-III, E and F in VLDL, LDL and HDL and the inhibitory effect of these lipoprotein density classes on the degradation of 125I-labeled HDL. There was, however, some association between the inhibitory effect and the levels of apolipoprotein D and C-I. 相似文献
6.
7.
The binding and metabolism of [3H]vitamin A-containing chylomicron (CM) remnants by the human hepatoma cell line HepG2 were studied. Mesenteric lymph chylomicrons were collected from [3H]retinol-fed rats and incubated with lipoprotein lipase to obtain CM remnants. At 4 degrees C, specific CM remnant binding was inhibited by an excess of unlabeled CM remnants. Specific binding predominated at low concentrations and approached saturation while total binding continued to increase over an extensive concentration range (0.45-32 microgram triglyceride/ml). CM remnant uptake at 37 degrees C was greater than that of CM and at least 70 times more efficient than the pinocytosis of sucrose. CM remnant binding increased with the extent of lipolysis. Addition of human apolipoprotein E enhanced both CM remnant and CM binding. After internalization, HepG2 cells hydrolyzed CM remnant-[3H]retinyl esters, and radiolabeled metabolites accumulated. As a function of the concentration of [3H]retinoid initially bound to cells, retinol and retinyl esters accumulated as the major cell-associated metabolites. In contrast, retinol was the major metabolite in the medium only at low retinoid concentrations; other more polar metabolites accumulated at higher concentrations (greater than 110 pmol retinoid/mg cell protein). The accumulation in the medium of labeled metabolites derived from CM remnant-retinoid was reduced when cells were preincubated in unlabeled retinol-supplemented media. The specific activity of retinol in the medium indicated that CM remnant-vitamin A had mixed with the cellular store prior to its secretion as retinol. These results indicate that HepG2 cells internalize CM remnants in part by specific binding sites, and that the metabolism of CM remnant-retinoids by the HepG2 cell involves retinyl ester hydrolysis and the secretion of retinol and other more polar metabolites. These processes were regulated in part by the concentration of retinoid delivered by the CM remnant and by the initial retinoid content of the cell. 相似文献
8.
K S Koumanov A B Momchilova-Pankova S R Wang R Infante 《The International journal of biochemistry》1990,22(12):1453-1455
1. Investigations have been carried out on the phospholipid composition, physical state and phospholipase A2 activity of plasma and microsomal membranes from HepG2 cells. 2. The results showed a great similarity in the physico-chemical properties of plasma and microsomal membranes from HepG2 cells. 3. The activity of phospholipase A2 was found to depend on the membrane physical state in both types of membranes. 相似文献
9.
Secretion of apolipoprotein B in serum-free cultures of human hepatoma cell line, HepG2 总被引:2,自引:0,他引:2
We have developed a defined medium which can maintain efficient growth of HepG2 cells sustaining the synthesis of a variety of plasma proteins including apolipoprotein B. This defined system was used to investigate long-term effects of insulin, estrogen, triiodothyronine, cholesterol, and oleate on the growth pattern of HepG2 cells and secretion rate of apolipoprotein B. Oleate and triiodothyronine caused significant increases in secretion of apolipoprotein B. The stimulatory effect of triiodothyronine was only observed after long (6 days) exposure of cells to the hormone. In contrast, insulin caused up to a 4-fold decrease in the secretion rate of apolipoprotein B during the early growth periods. This inhibitory effect appeared to be partially abolished after 6 days. Our data suggest that some important questions on regulation of apolipoprotein B expression can be addressed by the long-term culture of HepG2 cells in defined medium. 相似文献
10.
It is thought that free oligosaccharides in the cytosol are an outcome of quality control of glycoproteins by endoplasmic reticulum-associated degradation (ERAD). Although considerable amounts of free oligosaccharides accumulate in the cytosol, where they presumably have some function, detailed analyses of their structures have not yet been carried out. We isolated 21 oligosaccharides from the cytosolic fraction of HepG2 cells and analyzed their structures by the two-dimensional high-performance liquid chromatography (HPLC) sugar-mapping method. Sixteen novel oligosaccharides were identified in the cytosol in this study. All had a single N-acetylglucosamine at their reducing-end cores and could be expressed as (Man)n (GlcNAc)1. No free oligosaccharide with N,N'-diacetylchitobiose was detected in the cytosolic fraction of HepG2 cells. This suggested that endo-beta-N-acetylglucosaminidase was a key enzyme in the production of cytosolic free oligosaccharides. The 21 oligosaccharides were classified into three series--series 1: oligosaccharides processed from Manalpha1-2Manalpha1-6 (Manalpha1-2Manalpha1-3)Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3) Manbeta1-4GlcNAc (M9A') and Manalpha1-2Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M8A') by digestion with cytosolic alpha-mannosidase; series 2: oligosaccharides processed with Golgi alpha-mannosidases in addition to endoplasmic reticulum (ER) and cytosolic alpha-mannosidases; and series 3: glucosylated oligosaccharides produced from Glc1Man9GlcNAc1 by hydrolysis with cytosolic alpha-mannosidase. The presence of the series "2" oligosaccharides suggests that some of the misfolded glycoproteins had been processed in pre-cis-Golgi vesicles and/or the Golgi apparatus. When the cells were treated with swainsonine to inhibit cytosolic alpha-mannosidase, the amounts of M9A' and M8A' increased remarkably, suggesting that these oligosaccharides were translocated into the cytosol. Four oligosaccharides of series "2" also increased. In contrast, there were obvious reductions in Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M5B'), the end product from M9A' by digestion with cytosolic alpha-mannosidase, and Manalpha1-6(Manalpha1- 2Manalpha1-3)Manbeta1-4GlcNAc, derived from series "2" oligosaccharides by digestion with cytosolic alpha-mannosidase. Our data suggest that (1) some of the cytosolic oligosaccharides had been processed with Golgi alpha-mannosidases, (2) the major oligosaccharides translocated from the ER were M9A' and M8A', and (3) M5B' and Glc1M5B' were maintained at relatively high concentrations in the cytosol. 相似文献
11.
In human beings, serum transferrin levels increase during iron deficiency and decrease with iron overload. Yet, whether or not iron levels actually affect the synthesis of transferrin in human liver cells is not known. In previous studies, iron was shown to suppress the expression of chimeric human transferrin genes in livers of transgenic mice. The goal of this study was to determine if iron suppresses intact endogenous human transferrin synthesis by testing the effects of changes in iron levels on synthesis of transferrin in a human hepatoma cell line HepG2. In HepG2 cells, normalized(35)S-metabolically labeled transferrin synthesis was consistently less following iron treatment with hemin or ferric citrate, than following treatment with an iron-chelator deferroxamine. Thus, this study provides new evidence that iron can regulate synthesis of intact endogenous human transferrin. 相似文献
12.
13.
Secretion of lipids, apolipoproteins, and lipoproteins by human hepatoma cell line, HepG2: effects of oleic acid and insulin 总被引:7,自引:0,他引:7
The aim of this study was to determine the effect of oleic acid and insulin on the secretion of lipoproteins by HepG2 cells grown in minimum essential medium. Triglycerides were the major neutral lipid (57% of total) and apoB was the predominant apolipoprotein (56% of total) secreted by these cells. The addition of oleate resulted in a two-fold increase in the concentration of neutral lipids but only a slight to moderate increase in the apolipoprotein (A-I, A-II, B, and E) levels. The secretion of very low density lipoproteins (VLDL) was stimulated by 425%, low density lipoproteins (LDL) by 77%, and high density lipoproteins (HDL) by 68%. Whereas neutral lipid composition of LDL was unchanged, the VLDL particles contained a significantly higher percentage of triglyceride and lower percentages of cholesterol and cholesteryl esters compared with VLDL secreted in the absence of oleate. Oleate had no significant effect on the composition of apolipoproteins in VLDL, LDL and HDL. In basal medium, insulin caused a significant decrease in the secretion of neutral lipids and apolipoproteins, particularly triglycerides and apoB. In addition to a 60-68% reduction in the total concentration of VLDL and LDL, insulin altered their composition by producing particles that had a significantly lower content of triglycerides, contained less apoB, and were deficient in apoE. There were no major changes in the concentration or composition of HDL particles. Insulin had a similar but less pronounced effect on the concentration and composition of lipoproteins secreted in the presence of oleate. The increased accumulation of triglycerides in the HepG2 cells concomitant with their reduced levels in the medium suggests that insulin may affect the secretion rather than synthesis of triglyceride-rich lipoproteins. 相似文献
14.
Synthesis and secretion of lecithin-cholesterol acyltransferase by the human hepatoma cell line HepG2 总被引:1,自引:0,他引:1
C H Chen T H Forte B E Cahoon R N Thrift J J Albers 《Biochimica et biophysica acta》1986,877(3):433-439
The human liver cell line HepG2 was investigated for its synthesis and secretion of lecithin-cholesterol acyltransferase. The cells were grown to confluency in Eagle's minimal essential medium plus 10% fetal bovine serum. At the onset of the study, fetal bovine serum was removed and cells were grown in minimal essential medium only. At 6, 12, 24, and 48 h the cells were harvested, and the culture medium collected at each time point was assayed for lecithin-cholesterol acyltransferase mass and activity, cholesterol esterification rate, and apolipoprotein A-I mass. The rate of the enzyme secretion measured by both mass and activity was linear over 24 h of culture. The enzyme mass by radioimmunoassay was 1.7, 4.1, 7.9 and 13.7 ng/ml culture medium (or 8.3, 19.9, 38.5 and 66.7 ng/mg cell protein), respectively, and enzyme activity using an exogenous source of phosphatidylcholine/cholesterol liposomes containing apolipoprotein A-I as substrate was 85, 170, 315, and 402 pmol cholesterol esterified/h per ml culture medium (or 414, 828, 1534 and 1957 pmol cholesterol esterified/h per mg cell protein) for 6, 12, 24, and 48 h of culture, respectively. The endogenous cholesterol esterification rate of the culture medium was 47, 104, 224 and 330 pmol/h per ml and apolipoprotein A-I mass was 305, 720, 2400 and 3940 ng/ml culture medium over the same time frame. In contrast to culture medium, low levels of enzyme activity (approximately 10% of that in culture medium at 24 and 48 h) were observed in the extracts of HepG2 cells. The enzyme secreted by HepG2 was found to be similarly activated by apolipoprotein A-I, apolipoprotein E, or apolipoprotein A-IV, and was similarly inhibited by phenylmethylsulfonyl fluoride, dithiobisnitrobenzoate, p-hydroxymercuribenzoate, or iodoacetate as compared to human plasma enzyme. High-performance gel filtration of the culture medium revealed that the HepG2-secreted enzyme was associated with a fraction having a mean apparent molecular weight of approximately 200,000. We concluded that human hepatoma HepG2 cells synthesize and secrete lecithin-cholesterol acyltransferase, which is functionally homologous to the human plasma enzyme. 相似文献
15.
16.
Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2) 总被引:1,自引:0,他引:1
Alía M Ramos S Mateos R Bravo L Goya L 《Journal of biochemical and molecular toxicology》2005,19(2):119-128
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2. 相似文献
17.
Studies on the binding and degradation of human very-low-density lipoproteins by human hepatoma cell line HepG2 总被引:1,自引:0,他引:1
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism. 相似文献
18.
The binding of human lipoprotein lipase treated VLDL by the human hepatoma cell line HepG2. 总被引:1,自引:0,他引:1
It has been suggested that besides the LDL-receptor, hepatocytes possess an apo E or remnant receptor. To evaluate which hepatic lipoprotein receptor is involved in VLDL remnant catabolism, we studied the binding of VLDL remnants to HepG2 cells. Native VLDL was obtained from type IIb hyperlipidemic patients and treated with bovine milk lipoprotein lipase (LPL). This LPL-treated VLDL (LPL-VLDL) was used as representative for VLDL remnants. Our results show that LPL-VLDL binds with high affinity to HepG2 cells. Competition experiments showed that the binding of 125I-labelled LPL-VLDL is inhibited to about 30% of the control value by the simultaneous addition of an excess of either unlabelled LDL or LPL-VLDL. Preincubation of HepG2 cells with LDL resulted in a reduction of the binding of LDL and LPL-VLDL to 34 and 55% of the control value, whereas preincubation of the cells with heavy HDL (density between 1.16 and 1.21 g/ml) stimulated the binding of LDL and LPL-VLDL to about 230% of the control value. Preincubation of the cells with insulin (250 nM/l) also stimulated the binding of both LDL and LPL-VLDL (175 and 143% of the control value, respectively). We conclude that LPL-VLDL binds to the LDL-receptor of HepG2 cells and that no evidence has been obtained for the presence on HepG2 cells of an additional receptor that is involved in the binding of VLDL remnants. 相似文献
19.
Kuipers RS Luxwolda MF Janneke Dijck-Brouwer DA Muskiet FA 《Prostaglandins, leukotrienes, and essential fatty acids》2011,85(5):245-252
Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from ‘biomagnification’ into ‘bioattenuation’ occurs at 6 g% mRBC-DHA. At 6 g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4 g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5 g%. Postpartum maternal DHA-equilibrium is reached at 8 g% mRBC-DHA, corresponding with 1 g% DHA in mature milk and 7 g% iRBC-DHA at delivery that increases to 8 g% during lactation. This 8 g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle. 相似文献
20.
Cyclic AMP decreases LDL catabolism and cholesterol synthesis in the human hepatoma cell line HepG2 总被引:2,自引:0,他引:2
C Maziere J C Maziere S Salmon M Auclair L Mora M Moreau J Polonovski 《Biochemical and biophysical research communications》1988,156(1):424-431
A 24h pretreatment of the human hepatoma cell line HepG2 with dibutyryl cyclic AMP in the presence of theophylline induced a dose dependent decrease in low density lipoprotein binding, uptake and degradation. This effect is most likely due to a reduction of the LDL receptor number. Sterol synthesis from sodium acetate is markedly inhibited, either in the presence or absence of LDL, whereas synthesis from mevalonic acid is unchanged. Cyclic AMP also induced a decrease in hydroxy methyl glutaryl coenzyme A reductase activity. These effects of cyclic AMP might be involved in some hormonal regulation of the LDL pathway and cholesterol metabolism in the liver. 相似文献