首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FTIR spectroscopy is advantageous for detecting changes in polar chemical bonds that participate in bacteriorhodopsin function. Changes in H-bonding of Asp85, Asp96, the Schiff base, and internal water molecules around these residues upon the formation of the L, M, and N photo-intermediates of bacteriorhodopsin were investigated by difference FTIR spectroscopy. The locations and the interactions of these water molecules with the amino acid residues were further revealed by use of mutant pigments. The internal water molecules in the cytoplasmic domain probably work as mobile polar groups in an otherwise apolar environment and act to stabilize the L intermediate, and carrying a proton between the Schiff base and the proton acceptor or donor. Similar internal water molecules were shown to be present in bovine rhodopsin.  相似文献   

2.
Michel H 《The EMBO journal》1982,1(10):1267-1271
The three-dimensional crystals of the integral membrane protein bacteriorhodopsin have been characterized by X-ray diffraction and freeze-fracture electron microscopy: the needle-like form A crystals belong to space group P 1 (pseudohexagonal) with seven molecules per crystallographic unit cell forming one turn of a non-crystallographic helix. The probable arrangement of the bacteriorhodopsin molecules is derived from freeze-fracture electron micrographs and chromophore orientation. Membrane-like structures are not present. The same helices of bacteriorhodopsin molecules found in crystal form A also make up the cube-like crystal form B. They are now arranged in all three mutually perpendicular directions. These cubes are always highly disordered, since the unit cell length corresponds to 6.7 molecules of the 7-fold helix. Very often, conversion of bacteriorhodopsin from the three-dimensional crystals into filamentous material occurs.  相似文献   

3.
In previous Fourier transform infrared (FTIR) studies of the photocycle intermediates of bacteriorhodopsin at cryogenic temperatures, water molecules were observed in the L intermediate, in the region surrounded by protein residues between the Schiff base and Asp96. In the M intermediate, the water molecules had moved away toward the Phe219-Thr46 region. To evaluate the relevance of this scheme at room temperature, time-resolved FTIR difference spectra of bacteriorhodopsin, including the water O-H stretching vibration frequency regions, were recorded in the micro- and millisecond time ranges. Vibrational changes of weakly hydrogen-bonded water molecules were observed in L, M, and N. In each of these intermediates, the depletion of a water O-H stretching vibration at 3645 cm-1, originating from the initial unphotolyzed bacteriorhodopsin, was observed as a trough in the difference spectrum. This vibration is due to the dangling O-H group of a water molecule, which interacts with Asp85, and its absence in each of these intermediates indicates that there is perturbation of this O-H group. The formation of M is accompanied by the appearance of water O-H stretching vibrations at 3670 and 3657 cm-1, the latter of which persists to N. The 3670 cm-1 band of M is due to water molecules present in the region surrounded by Thr46, Asp96, and Phe219. The formation of L at 298 K is accompanied by the perturbations of Asp96 and the Schiff base, although in different ways from what is observed at 170 K. Changes in a broad water vibrational feature, centered around 3610 cm-1, are kinetically correlated with the L-M transition. These results imply that, even at room temperature, water molecules interact with Asp96 and the Schiff base in L, although with a less rigid structure than at cryogenic temperatures.  相似文献   

4.
Summary Interface films of purple membrane and lipid containing spectroscopically intact and oriented bacteriorhodopsin have been used as a model system to study the function of this protein. Small positive charges in surface potential (<1 mV) are detected upon illumination of these films at the air-water interface. These photopotentials, are not affected by overlaying the interface film with a thin layer (0.3 mm) of decane. However, they are dramatically increased when lipid soluble proton carriers FCCP or DNP are added to the decane. The polarity of the photopotential indicates that, in the light, positive charges are transported through the interface from the aqueous to the organic phase. The action spectrum of the photopotential is identical to the absorption spectrum of bacteriorhodopsin. Since bacteriorhodopsin molecules are oriented with their intracellular surface towards the aqueous subphase, the characteristics of the photopotential indicate that in the light bacteriorhodopsin translocates protons from its intracellular to its extracellular surface. The kinetics of the photopotential reveal that the rate and extent of proton transport are proportional both to the fraction of bacteriorhodopsin molecules excited and to the concentration of proton acceptor. The photopotentials result from changes in the ionic distribution across the decane-water interface and can be cancelled by lipid soluble anions.  相似文献   

5.
Internal water molecules are considered to play a crucial role in the functional processes of proton pump proteins. They may participate in hydrogen-bonding networks inside proteins that constitute proton pathways. In addition, they could participate in the switch reaction by mediating an essential proton transfer at the active site. Nevertheless, little has been known about the structure and function of internal water molecules in such proteins. Recent progress in infrared spectroscopy and X-ray crystallography provided new information on water molecules inside bacteriorhodopsin, the light-driven proton pump. The accumulated knowledge on bacteriorhodopsin in the last decade of the 20th century will lead to a realistic picture of internal water molecules at work in the 21st century. In this review, I describe how the role of water molecules has been studied in bacteriorhodopsin, and what should be known about the role of water molecules in the future.  相似文献   

6.
The purple membrane is a two-dimensional crystalline lattice formed by bacteriorhodopsin and lipid molecules in the cytoplasmic membrane of Halobacterium salinarum. High-resolution structural studies, in conjunction with detailed knowledge of the lipid composition, make the purple membrane one of the best models for elucidating the forces that are responsible for the assembly and stability of integral membrane protein complexes. In this review, recent mutational efforts to identify the structural features of bacteriorhodopsin that determine its assembly in the purple membrane are discussed in the context of structural, calorimetric and reconstitution studies. Quantitative evidence is presented that interactions between transmembrane helices of neighboring bacteriorhodopsin molecules contribute to purple membrane assembly. However, other specific interactions, particularly between bacteriorhodopsin and lipid molecules, may provide the major driving force for assembly. Elucidating the molecular basis of protein-protein and protein-lipid interactions in the purple membrane may provide insights into the formation of integral membrane protein complexes in other systems.  相似文献   

7.
The effects of excitation light intensity on the kinetics of the bacteriorhodopsin photocycle were investigated. The earlier reported intensity-dependent changes at 410 and 570 nm are explained by parallel increases in two of the rate constants, for proton transfers to D96 from the Schiff base and from the cytoplasmic surface, without changes in the others, as the photoexcited fraction is increased. Thus, it appears that the pKa of D96 is raised by a cooperative effect within the purple membrane. This interpretation of the wild-type kinetics was confirmed by results with several mutant proteins, where the rates are well separated in time and a model-dependent analysis is unnecessary. Based on earlier results that demonstrated a structural change of the protein after deprotonation of the Schiff base that increases the area of the cytoplasmic surface, and the effects of high hydrostatic pressure and lowered water activity on the photocycle steps in question, we suggest that the pKa of D96 is raised by a lateral pressure that develops when other bacteriorhodopsin molecules are photoexcited within the two-dimensional lattice of the purple membrane. Expulsion of no more than a few water molecules bound near D96 by this pressure would account for the calculated increase of 0.6 units in the pKa.  相似文献   

8.
The rate of regeneration of rhodopsin, from 11-cis-retinal and opsin, and bacteriorhodopsin from all-trans-retinal and bacterio-opsin, in the presence or absence of compounds whose structures partially resemble retinal were measured. Some of these compounds severely slowed down the regeneration process, but did not influence the extent of regeneration. In the case of compounds with a carbonyl functional group they were not joined to the active site of the apo-protein via a Schiff's base linkage since after treatment with NaBH4 an active apo-protein remained. The most effective inhibitors of rhodopsin regeneration were molecules whose structure could be superimposed on 9-cis or 11-cis retinal up to carbon atom 11. These C13 and C15 molecules were not distinguished between aldehyde, ketone or alcohol functional groups. The regeneration of bacteriorhodopsin was not inhibited by retinal analogues with short side chains. The most effective inhibitors were the all-trans C17-aldehyde (beta-ionylideneacetaldehyde) or C18-ketone (beta-ionylidenepent-3-ene-2-one) which, compared to retinal, lack two or three carbon atoms from the end of the poylene chain. The inhibition was very dependent upon the presence of the all-trans isomer and required aldehyde or ketone as functional group nitriles and alcohols were less effective. However, similarly to retinol, the all-trans C17 and C18 alcohols underwent a bathochromic shift and showed fine-structured spectra when mixed with bacterio-opsin.  相似文献   

9.
On the mechanism of bacteriorhodopsin solubilization by surfactants   总被引:1,自引:0,他引:1  
Purple membrane bacteriorhodopsin can be easily solubilized by Triton X-100 and other detergents, but not by deoxycholate. In order to understand this behavior, we have examined the effects of a variety of surfactants. We show that detergents containing the cholane ring (cholate, taurocholate, 3[(3-cholamidopropyl)diethyl-ammonio]propanesulfonic acid...) are virtually unable to solubilize native bacteriorhodopsin. However, when the protein is reconstituted in dimyristoyl phosphatidylcholine and solubilization is assayed at a temperature such that bacteriorhodopsin is in the form of monomers, solubilization by cholane detergents does occur. We propose that steric factors prevent access of the rigid planar surfactant molecules to the hydrophobic protein regions. These are perhaps located in the monomer-monomer interface, whose solvation by surfactants is essential for solubilization to occur. We note that the capacity of some detergents to solubilize bacteriorhodopsin is always associated within the same range of surfactant concentrations with bleaching (partial or total) of the protein chromophore. The detergent-induced bleaching is at least partially reversible, suggesting that free retinal remains associated to some membrane components. While some surfactant molecules remain tightly bound to the membrane protein, cholane detergents can be completely removed from bacteriorhodopsin. Our results indicate that a structure-function relationship exists for detergents applied to the solubilization of bacteriorhodopsin.  相似文献   

10.
Reversible temperature-dependent conformational changes in bacteriorhodopsin of the purple membranes from Halobacterium halobium have been studied by the method of deuterium exchange. A noticeable increase in the mobility of structured peptide groups in bacteriorhodopsin was revealed upon reorganization of the supermolecular structure at about 60 degrees C. In the supermolecular structure formed, bacteriorhodopsin molecules have no contacts with external medium at 75-80 degrees C. Membrane destruction results in a drastic increase in molecular mobility within the narrow temperature range 100-110 degrees C. The effects observed are induced by predenaturation changes in the bacteriorhodopsin structure and rearrangements in the structure of a protein-lipid complex. The temperature dependence of the number of peptide groups involved in reversible conformational rearrangements is in good agreement with the microcalorimetry data.  相似文献   

11.
Purple membranes of Halobacterium, halobium were modified with fluorescamine. At pH 8.8, with a molar ratio of fluorescamine to bacteriorhodopsin of 170, about 6 residues of lysine were modified while the arginines were not affected at all. Except for the appearance of the fluorescamine peak at 394 nm and some broadening of the chromophore peak at 570 nm, the absorption spectrum of bacteriorhodopsin was not significantly changed after modification. After fluorescamine modification, circular dichroism studies indicated loss of exciton coupling between bacteriorhodopsin molecules in the purple membrane. Rotational diffusion studies suggested enhanced mobility of the chromophore after modification. However, the spectral changes accompanying the light-to-dark adaptation of purple membranes were not prevented by fluorescamine modification. The implications of these findings are that exciton coupling between neighboring bacteriorhodopsin molecules in the purple membrane is not required for light-to-dark adaptation.  相似文献   

12.
The goal of time-resolved crystallographic experiments is to capture dynamic "snapshots" of molecules at different stages of a reaction pathway. In recent work, we have developed approaches to determine determined light-induced conformational changes in the proton pump bacteriorhodopsin by electron crystallographic analysis of two-dimensional protein crystals. For this purpose, crystals of bacteriorhodopsin were deposited on an electron microscopic grid and were plunge-frozen in liquid ethane at a variety of times after illumination. Electron diffraction patterns were recorded either from unilluminated crystals or from crystals frozen as early as 1 ms after illumination and used to construct projection difference Fourier maps at 3.5-A resolution to define light-driven changes in protein conformation. As demonstrated here, the data are of a sufficiently high quality that structure factors obtained from a single electron diffraction pattern of a plunge-frozen bacteriorhodopsin crystal are adequate to obtain an interpretable difference Fourier map. These difference maps report on the nature and extent of light-induced conformational changes in the photocycle and have provided incisive tools for understanding the molecular mechanism of proton transport by bacteriorhodopsin.  相似文献   

13.
Glucose-embedded bacteriorhodopsin shows M-intermediates with different Amide I infrared bands when samples are illuminated at 240 or 260 K, in contrast with fully hydrated samples where a single M-intermediate is formed at all temperatures. In hydrated, but not in glucose-embedded specimens, the N intermediate is formed together with M at 260 K. Both Fourier transform infrared and electron diffraction data from glucose-embedded bacteriorhodopsin suggest that at 260 K a mixture is formed of the M-state that is trapped at 240 K, and a different M-intermediate (MN) that is also formed by mutant forms of bacteriorhodopsin that lack a carboxyl group at the 96 position, necessary for the M to N transition. The fact that an MN species is trapped in glucose-embedded, wild-type bacteriorhodopsin suggests that the glucose samples lack functionally important water molecules that are needed for the proton transfer aspartate 96 to the Schiff base (and, thus, to form the N-intermediate); thus, aspartate 96 is rendered ineffective as a proton donor.  相似文献   

14.
Generation of electric potential difference by bacteriorhodopsin proteoliposomes incorporated into the phospholipid-impregnated collodion film has been studied. It is shown that illumination of this film by continuous light gives rise to the generation of an electric potential difference across the film (plus on the bacteriorhodopsin-free side), which can be as high as 300 mV. Short unsaturating flash inducing single turn-over of bacteriorhodopsin generates the potential difference which is a function of the flash intensity (70 mV at 3 mjoule light). The flash-induced photoelectric response consists of four phases. (1) Very fast (tau less than 1 microsec) generation of a potential difference (minus in the bacteriorhodopsin-free compartment). The amplitude of this phase is rather small (1--5 mV). (2) Fast phase of positive charging of the bacteriorhodopsin-free compartment (tau = 25--50 microsec). (3) Slow phase of positive charging of this compartment (tau = 6--12 msec) Amplitude of the second phase is to that of the third as 1 : 2. (4) A very slow phase of discharge of the flash-induced potential difference (tau = 1 sec at 10(8) ohm X cm2 film resistance). The third phase was specifically inhibited by La3+. Both the second and the third phases are decelerated by substitution of D2O in 4.5--5 and 2 times, respectively, while the amplitude of the first phase increases. Prolonged storage of the system in the dark (tua = 20--25 min) causes the decrease in the amplitudes of the second and the third phases as if the amount of active bacteriorhodopsin molecules were increased by factor 2. Such an inhibition was reversed by 30--60 sec illumination of the system. The dark adaptation is accompanied by some increase in the first phase amplitude. Comparison of these data with results of other studies on bacteriorhodopsin suggests that (1) the first phase is due to the photoinduced change in the retinal dipole; (2) the second phase corresponds to H+ transfer from Schiff base to the water solution in the proteoliposome interior; 3) the third phase represents H+ transfer from the incubation mixture to Schiff base; (4) the dark adaptation is a result of transition of photoelectrochemically active all-trans-retinal to the inactive 13-cis-retinal.  相似文献   

15.
This review provides detailed procedures for the crystallization of membrane proteins via the lipidic cubic phase method. Bacteriorhodopsin-specific, hands-on protocols are given for (i) the preparation of bacteriohordopsin from purple membrane by monomerization in octylglucoside and gel filtration chromatography or by selective extraction after pre-treatment with dodecyl-trimethylammonium bromide, (ii) the incorporation of bacteriorhodopsin into lipidic cubic phases by mixing in vials or within coupled syringes and, (iii) the crystallization of bacteriorhodopsin in the lipidic matrix by adding a solid salt or an overlaying with a solution. References for further useful procedures and materials are listed in order to provide biochemists and crystallographers with all information that is necessary to grow crystals of the membrane protein bacteriorhodopsin.  相似文献   

16.
The membrane protein bacteriorhodopsin was imaged in buffer solution at room temperature with the atomic force microscope. Three different substrates were used: mica, silanized glass and lipid bilayers. Single bacteriorhodopsin molecules could be imaged in purple membranes adsorbed to mica. A depression was observed between the bacteriorhodopsin molecules. The two dimensional Fourier transform showed the hexagonal lattice with a lattice constant of 6.21 +/- 0.20 nm which is in agreement with results of electron diffraction experiments. Spots at a resolution of approximately 1.1 nm could be resolved. A protein, cationic ferritin, could be imaged bound to the purple membranes on glass which was silanized with aminopropyltriethoxysilane. This opens the possibility of studying receptor/ligand binding under native conditions. In addition, purple membranes bound to a lipid bilayer were imaged. These images may help in interpreting results of functional studies done with purple membranes adsorbed to black lipid membranes.  相似文献   

17.
The photoconversion of bacteriorhodopsin and the effects of an applied electric field (5 · 107 V · m?1) were studied in dry films of purple membranes from Halobacterium halobium. The electric field was found to cause at least two different effects: (1) it blocks in part the formation of the batho-bacteriorhodopsin (K), most probably due to electrically-induced dark transition of some bacteriorhodopsin molecules into the photochemically inactive form; (2) it decreases the rate of the intermediate M decay, the rise time of the M formation being unaffected by electric field. The observed phenomena may suggest a feedback control mechanism for the regulation of the bacteriorhodopsin photocycle in purple membranes.  相似文献   

18.
Structural changes of purple membrane during photobleaching in the presence of hydroxylamine were monitored using atomic force microscopy (AFM). The process of bleaching was associated with the disassembly of the purple membrane crystal into smaller crystals. Imaging steps of the photobleaching progress showed that disassembly proceeds until the sample is fully bleached and its crystallinity is almost lost. As revealed from high resolution AFM topographs, the loss of crystallinity was initiated by loss of lattice forming contact between the individual bacteriorhodopsin trimers. The bacteriorhodopsin molecules, however, remained assembled into trimers during the entire photobleaching process. Regeneration of the photobleached sample into intact purple membrane resulted in the reassembly of the bacteriorhodopsin trimers into the trigonal lattice of purple membrane. The data provide novel insights into factors triggering purple membrane formation and structure.  相似文献   

19.
Difference infrared spectroscopy has been used to study the way in which the intrinsic molecules gramicidin A, alamethicin and bacteriorhodopsin perturb their environment when present within a lipid bilayer structure. Dimyristoylphosphatidylcholine containing perdeuterated chains has been used to enable the lipid chain C-2H stretching absorption band to be separated from the C-H bands arising from the intrinsic polypeptide or protein. The C-2H stretching bands of the phospholipid are sensitive to two different types of chain conformation. The C-2H stretching frequency provides information about the static order of the lipid chains, whilst the half-maximum bandwidth provides a measure of chain librational and torsional motion. From the measurements it is concluded that: (1) Above the lipid phase transition temperature tc, low concentrations of either gramicidin A or alamethicin cause a small decrease in lipid chain gauche isomers whilst bacteriorhodopsin in the lipid bilayer has no effect. At higher concentrations each intrinsic molecule causes an increase to occur in lipid chain gauche isomers. (2) The lipid acyl chain motion, as deduced from the bandwidths is increased by the presence of a low concentration of gramicidin A within the lipid bilayer. The presence of the other intrinsic molecules studied have little effect. A higher concentration of alamethicin causes a decrease in chain motion whilst gramicidin A and bacteriorhodopsin have no effect. (3) Below tc each of the intrinsic molecules when present in the lipid bilayer causes an increase in gauche isomers to occur as well as an increase in the lipid chain motion. A broadening of the lipid phase transition occurs as the concentration of the polypeptide increases.  相似文献   

20.
Possible steps in the folding of bacteriorhodopsin are revealed by studying the refolding and interaction of two fragments of the molecule reconstituted in lipid vesicles. (1) Two denatured bacteriorhodopsin fragments have been purified starting from chymotryptically cleaved bacteriorhodopsin. Cleaved bacteriorhodopsin has been renatured from a mixture of the fragments in Halobacterium lipids/retinal/dodecyl sulfate solution following removal of dodecyl sulfate by precipitation with potassium. The renatured molecules have the same absorption spectrum and extinction coefficient as native cleaved bacteriorhodopsin. They are integrated into small lipid vesicles as a mixture of monomers and aggregates. Extended lattices form during the partial dehydration process used to orient samples for X-ray and neutron crystallography. (2) Correct refolding of cleaved bacterioopsin occurs upon renaturation in the absence of retinal. Regeneration of the chromophore and reformation of the purple membrane lattice are observed following subsequent addition of all-trans retinal. (3) The two chymotryptic fragments have been reinserted separately into lipid vesicles and refolded in the absence of retinal. Circular dichroism spectra of the polypeptide backbone transitions indicate that they have regained a highly alpha-helical structure. The kinetics of chromophore regeneration following reassociation have been studied by absorption spectroscopy. Upon vesicle fusion, the refolded fragments first reassociate, then bind retinal and finally regenerate cleaved bacteriorhodopsin. The complex formed in the absence of retinal is kinetically indistinguishable from cleaved bacterioopsin. The refolded fragments in lipid vesicles are stable for months, both as separate entities and after reassociation. These observations provide further evidence that the native folded structure of bacteriorhodopsin lies at a free energy minimum. They are interpreted in terms of a two-stage folding mechanism for membrane proteins in which stable transmembrane helices are first formed. They subsequently pack without major rearrangement to produce the tertiary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号