首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. 1. Seventy‐seven individual last‐instar caterpillars foraging in the field were examined for 6 h each. They represented four species of Arctiidae of similar size and habitat use. Two, Hypocrisias minima and Pygarctia roseicapitis, are specialists restricted to particular plant genera. The other two, Grammia geneura and Estigmene acrea, are extreme generalists that use many host plant species from multiple plant families. 2. Parameters of behavioural efficiency were monitored. Generalists spent more time walking, rejected more potential host plants, took longer to decide to feed after inspecting a plant, and took relatively more small feeding bouts compared with specialists. 3. This is the first test of differential foraging efficiency in the field in relation to diet breadth of insects and the data indicate that generalists are less efficient in their foraging activities and may suffer from divided attention. The need for attentiveness to enhance efficiency and thereby reduce ecological risk is discussed.  相似文献   

2.
Many studies have demonstrated that the nonconsumptive effect (NCE) of predators on prey traits can alter prey demographics in ways that are just as strong as the consumptive effect (CE) of predators. Less well studied, however, is how the CE and NCE of multiple predator species can interact to influence the combined effect of multiple predators on prey mortality. We examined the extent to which the NCE of one predator altered the CE of another predator on a shared prey and evaluated whether we can better predict the combined impact of multiple predators on prey when accounting for this influence. We conducted a set of experiments with larval dragonflies, adult newts (a known keystone predator), and their tadpole prey. We quantified the CE and NCE of each predator, the extent to which NCEs from one predator alters the CE of the second predator, and the combined effect of both predators on prey mortality. We then compared the combined effect of both predators on prey mortality to four predictive models. Dragonflies caused more tadpoles to hide under leaf litter (a NCE), where newts spend less time foraging, which reduced the foraging success (CE) of newts. Newts altered tadpole behavior but not in a way that altered the foraging success of dragonflies. Our study suggests that we can better predict the combined effect of multiple predators on prey when we incorporate the influence of interactions between the CE and NCE of multiple predators into a predictive model. In our case, the threat of predation to prey by one predator reduced the foraging efficiency of a keystone predator. Consequently, the ability of a predator to fill a keystone role could be compromised by the presence of other predators.  相似文献   

3.
4.
Theory suggests that increasingly long, negative feedback loops of many interacting species may destabilize food webs as complexity increases. Less attention has, however, been paid to the specific ways in which these ‘delayed negative feedbacks’ may affect the response of complex ecosystems to global environmental change. Here, we describe five fundamental ways in which these feedbacks might pave the way for abrupt, large-scale transitions and species losses. By combining topological and bioenergetic models, we then proceed by showing that the likelihood of such transitions increases with the number of interacting species and/or when the combined effects of stabilizing network patterns approach the minimum required for stable coexistence. Our findings thus shift the question from the classical question of what makes complex, unaltered ecosystems stable to whether the effects of, known and unknown, stabilizing food-web patterns are sufficient to prevent abrupt, large-scale transitions under global environmental change.  相似文献   

5.
6.
1. Functional response models (e.g. Holling's disc equation) that do not take the spatial distributions of prey and predators into account are likely to produce biased estimates of predation rates. 2. To investigate the consequences of ignoring prey distribution and predator aggregation, a general analytical model of a predator population occupying a patchy environment with a single species of prey is developed. 3. The model includes the density and the spatial distribution of the prey population, the aggregative response of the predators and their mutual interference. 4. The model provides explicit solutions to a number of scenarios that can be independently combined: the prey has an even, random or clumped distribution, and the predators show a convex, sigmoid, linear or no aggregative response. 5. The model is parameterized with data from an acarine predator-prey system consisting of Phytoseiulus persimis and Tetranychus urticae inhabiting greenhouse cucumbers. 6. The model fits empirical data quite well and much better than if prey and predators were assumed to be evenly distributed among patches, or if the predators were distributed independently of the prey. 7. The analyses show that if the predators do not show an aggregative response it will always be an advantage to the prey to adopt a patchy distribution. On the other hand, if the predators are capable of responding to the distribution of prey, then it will be an advantage to the prey to be evenly distributed when its density is low and switch to a more patchy distribution when its density increases. The effect of mutual interference is negligible unless predator density is very high. 8. The model shows that prey patchiness and predator aggregation in combination can change the functional response at the population level from type II to type III, indicating that these factors may contribute to stabilization of predator-prey dynamics.  相似文献   

7.
We consider a system of delay differential equations modeling the predator-prey ecoepidemic dynamics with a transmissible disease in the predator population. The time lag in the delay terms represents the predator gestation period. We analyze essential mathematical features of the proposed model such as local and global stability and in addition study the bifurcations arising in some selected situations. Threshold values for a few parameters determining the feasibility and stability conditions of some equilibria are discovered and similarly a threshold is identified for the disease to die out. The parameter thresholds under which the system admits a Hopf bifurcation are investigated both in the presence of zero and non-zero time lag. Numerical simulations support our theoretical analysis.  相似文献   

8.
9.
Substantial variation in foraging strategies can exist within populations, even those typically regarded as generalists. Specializations arise from the consistent exploitation of a narrow behavioral, spatial or dietary niche over time, which may reduce intraspecific competition and influence adaptability to environmental change. However, few studies have investigated whether behavioral consistency confers benefits at the individual and/or population level. While still recovering from commercial sealing overexploitation, Australian fur seals (AUFS; Arctocephalus pusillus doriferus) represent the largest marine predator biomass in south‐eastern Australia. During lactation, female AUFS adopt a central‐place foraging strategy and are, thus, vulnerable to changes in prey availability. The present study investigated the population‐level repeatability and individual consistency in foraging behavior of 34 lactating female AUFS at a south‐east Australian breeding colony between 2006 and 2019. Additionally, the influence of individual‐level behavioral consistency on indices of foraging success and efficiency during benthic diving was determined. Low to moderate population‐level repeatability was observed across foraging behaviors, with the greatest repeatability in the mean bearing and modal dive depth. Individual‐level consistency was greatest for the proportion of benthic diving, total distance travelled, and trip duration. Indices of benthic foraging success and efficiency were positively influenced by consistency in the proportion of benthic diving, trip duration and dive rate but not influenced by consistency in bearing to most distal point, dive depth or foraging site fidelity. The results of the present study provide evidence of the benefits of consistency for individuals, which may have flow‐on effects at the population level.  相似文献   

10.
11.
12.
Blubber fatty acid(s) (FA) signatures can provide accurate estimates of predator diets using quantitative FA signature analysis, provided that aspects of predator FA metabolism are taken into account. Because the intestinal absorption of dietary FA and their incorporation into chylomicrons (the primary transport lipoproteins for dietary FA in the blood) may influence the relationship between FA composition in the diet and adipose tissue, we investigated the metabolism of individual FA at these early stages of assimilation. We also investigated the capacity of chylomicron signatures to provide quantitative estimates of prey composition of an experimental meal. Six captive juvenile grey seals (Halichoerus grypus) were fed either 2.3 kg (n=3) or 4.6 kg (n=3) of Atlantic herring (Clupea harengus). Although chylomicron FA signatures resembled diet signatures at all samplings, absolute differences were smallest at 3-h post-feeding, when chylomicrons were likely largest and had the greatest ratio of triacylglycerol to phospholipid FA. Specific FA that differed significantly between diet and chylomicron signatures reflected either input from endogenous sources or loss through peroxisomal -oxidation. When these aspects of metabolism were accounted for, the quantitative predictions of diet composition generated using chylomicron signatures were extremely accurate, even when tested against 28 other prey items.  相似文献   

13.
Kevin R. Hopper 《Oikos》2001,93(3):470-476
Two of the main predators of dragonfly larvae, insectivorous fish in communities with fish and large dragonfly species in communities without fish, differ markedly in their mode of predation. In general, dragonfly species coexist successfully with one predator or the other, but larvae of the dragonfly Pachydiplax longipennis can coexist successfully with both. I examined the behavioral response of these larvae to a simulated predator attack to determine whether their response (1) differs between the two communities, and (2) is sensitive to waterborne cues about the type of predator present. I compared larvae from two different communities: fish ponds where insectivorous fish were the top predators, and fish-free ponds where large dragonflies were the top predators. Larvae from fish-free ponds actively moved away from an attack significantly more than did larvae from fish ponds, provided each was attacked in its native pond water. Larvae collected from a fish-free pond but then attacked in fish water moved less than did controls (larvae attacked in fish-free water). Likewise, larvae collected from a fish pond but attacked in fish-free water moved more than did controls (larvae attacked in fish water). Larvae attacked first in water from their native pond and then in water from the contrasting pond changed their response in the expected direction. These results indicate that escape behavior in P. longipennis differs between communities with different predator types and is sensitive to waterborne cues in a manner consistent with the mode of predation employed by each predator.  相似文献   

14.
Summary In situations where foraging sites vary both in food reward and predation risk, conventional optimal foraging models based on the criterion of maximizing net rate of energy intake commonly fail to predict patch choice by foragers. Recently, an alternative model based on the simple rule when foraging, minimize the ratio of mortality rate (u) to foraging rate (f) was successful in predicting patch preference under such conditions (Gilliam and Fraser 1987). In the present study, I compare the predictive ability of these two models under conditions where available patches vary both in predation hazard and foraging returns. Juvenile bluegill sunfish (Lepomis macrochirus) were presented with a choice between two patches of artificial vegetation differing in stem density (i.e. 100, 250, and 500 stems/m2) in which to forage. Each combination (100:250, 250:500, or 100:500) was presented in the absence, presence, and after exposure to a bass predator (Micropterus salmoides). Which patch of vegetation bluegills chose to forage in, and foraging rate within each patch were recorded. Independent measurements of bluegill foraging rate and risk of mortality in the three stem densities provided the data for predicting patch choice by the two models. With no predator, preference between plots was consistent with the maximize energy intake per unit time rule of conventional optimality models. However, with a predator present, patch preference switched to match a minimize u/f criterion. Finally, when tested shortly after exposure to a predator (i.e. 15 min), bluegill preference appeared to be in a transitional phase between these two rules. Results are discussed with respect to factors determining the distribution of organisms within beds of aquatic vegetation.  相似文献   

15.
Synopsis African mormyriform and South American gynmotiform fishes are unique among freshwater fishes in their abilities to generate and perceive an electrical field that aids in orientation, prey detection, and communication. Here we present evidence from comparative ecology and morphology that tube-snouted electric fishes of the generaSternarchorhynchus (Apteronotidae) andCampylomormyrus (Mormyridae) may be unique among fishes in their mode of foraging by grasp-suction. The grasp-suction mode of feeding is a specialization for extracting immature stages of aquatic insects that burrow into, or hide within, interstitial spaces and holes in matrices of compacted clay particles that form the channel bottom of many tropical lowland rivers. Ecomorphological implications of the remarkable evolutionary convergence for this specialized mode of foraging by tube-snouted electric fishes provide a challenge to Liem's (1984, 1990) theory of separate aquatic and terrestrial vertebrate feeding modes.Invited Editorial  相似文献   

16.
Summary The foraging behavior of the subterranean mole rat Spalax ehrenbergi (Rodentia, Spalacidae) was tested according to the framework of optimal foraging theory. We compared the frequencies of food species hoarded in storage chambers of mole rats with the frequencies of these species occurring in the vicinity of the mole rats' nest mounds during the winter and spring seasons. In addition, we examined the food composition of several summer nest mounds. Laboratory observations were conducted in order to test the foraging behavior of mole rats under simulated subterranean conditions. The mole rat is a generalist and collects a variety of food species. Out of 33 plant species that were hoarded by mole rats in the 21 studied nest mounds, 61% (n=20) were geophytes, 21% (n=7) perennial herbs, 15% (n=5) annual herbs and 3% (n=1) dwarf shrubs. The frequency of each collected species in the 16 winter and spring nest mounds is in general accordance with its frequency in the mole rat's territory. This implies that the mole rat randomly samples the food reserve of its territory without special preference or directed search for a particular species. The collection or avoidance of any food item is not dependent on the presence or absence of any other food item. We suggest that the foragin generalism of the mole rat is a product of the constraints of a subterranean niche — the necessity to hoard food as much as possible in a limited time period and the high energetic investment of tunneling to the food items.  相似文献   

17.
18.
19.
Summary Traditional methods of assessing population viability ignore both genetic—demographic interactions as well as community level dynamics. We address these deficiencies by presenting a model that investigates the effects of predation on a prey population experiencing inbreeding depression. Beginning with a simple Lotka—Volterra predator—prey system, we rewrite prey per capita mortality as a function of inbreeding. Inbreeding varies as a function of population size. Using computer simulation, we find that prey extinction times are inversely related to the level of inbreeding depression with and without predation. For all but very low levels of inbreeding depression, predation appreciably reduces persistence time. At moderate levels of inbreeding, predators go extinct before prey. When migration is introduced at low and moderate rates, persistence times only improve for those populations with low inbreeding depression measures. At a higher migration rate, persistence times are lengthened for low and moderately depressed prey populations. Increasing birth rates produce a visible, though noisy, trend towards increased times to extinction for low to moderate levels of inbreeding.  相似文献   

20.
Summary We evaluated the role of adult foraging success in the lifetime fitness of female crab spidersMisumena vatia. Misumena are semelparous, sit and wait predators that hunt for insect prey on flowers, in this study primarily on inflorescences (umbels) of milkweedAsclepias syriaca. We used path analysis to integrate previously performed experimental and observational studies, thereby establishing the magnitude, correlations and causal relationships of key foraging and life history variables and their roles in lifetime fitness. A path proceeding from maternal hunting patch choice through maternal mass, clutch mass and number of dispersal-age young was the dominant element and explained a large part of the variation. Other paths that incorporated parasitism of the egg mass and predation of young leaving the nests made only small impacts on variation. No trade-offs were found, primarily because a single factor, maternal mass (a maternal effect) resulting from foraging success, provided major benefits for successive life history stages. Since differences in the numbers of eggs, egg loss and mortality at dispersal resulted almost entirely from differences in maternal mass, they are controlled by the maternal generation and, thus, are appropriately attributed to the lifetime fitnesses of the mothers, rather than to those of their offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号